ORIGINAL ARTICLE

Stable triazolylphosphonate analogues of phosphohistidine

Bu

m/z

NDPK

NMR

Ph

Mass:charge ratio

Phenyl

Nucleoside diphosphate kinase

Nuclear magnetic resonance

Butyl

Shin Mukai · Gavin R. Flematti · Lindsay T. Byrne · Paul G. Besant · Paul V. Attwood · Matthew J. Piggott

Received: 12 April 2011/Accepted: 31 October 2011/Published online: 22 November 2011 © Springer-Verlag 2011

Abstract Histidine-phosphorylated proteins and the corresponding kinases are important components of bacterial and eukaryotic cell-signalling pathways, and are therefore potential drug targets. The study of these biomolecules has been hampered by the lability of the phosphoramidate functional group in the phosphohistidines and the lack of generic antibodies. Herein, the design and concise synthesis of stable triazolylphosphonate analogues of *N*1- and *N*3-phosphohistidine, and derivatives suitable for bioconjugation, are described.

Keywords Phosphohistidine · Azide-alkyne cycloaddition · Triazolylalanine · Stable analogues · Synthesis · Haptens

Abbreviations

Ac Acetyl
All Allyl
aq. Aqueous
Ar Aryl
Bn Benzyl

Boc tert-Butoxycarbonyl

br Broad

S. Mukai · G. R. Flematti · L. T. Byrne · P. G. Besant · P. V. Attwood · M. J. Piggott (运) School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia e-mail: matthew.piggott@uwa.edu.au

Present Address: L. T. Byrne

Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley,

WA 6009, Australia

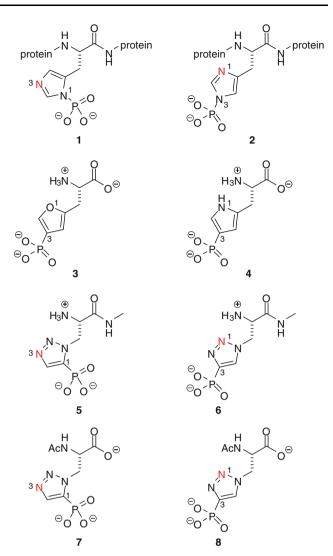
Cp* Pentamethylcyclopentadienyl **DCM** Dichloromethane d Doublet Doublet of doublets **DEAD** Diethyl azodicarboxylate **DEPT** Distortionless enhancement by polarisation transfer DIAD Diisopropyl azodicarboxylate DIPEA Diisopropylethylamine **DMF** *N*,*N*-Dimethylformamide E1cb Elimination unimolecular conjugate base **ESI** Electrospray ionisation Et Ethyl Fmoc 9-Fluorenylmethoxycarbonyl FT Fourier transform **HCTU** O-(6-Chlorobenzotriazol-1-yl)-N,N,N',N'tetramethyluronium hexafluorophosphate **HMBC** Heteronuclear multiple bond correlation HHK Histone H4 histidine kinase **HPLC** High-performance liquid chromatography HR High-resolution (MS) i.d. Internal diameter i-Pr Isopropyl IR Infrared lit. Literature Multiplet M Me Methyl Mp Melting point MS Mass spectrum **MWD** Multiple-wavelength detector

q Quartet

 $R_{\rm f}$ Retention factor

TFA Trifluoroacetic acid THF Tetrahydrofuran TIPS Triisopropylsilyl

TLC Thin layer chromatography


Tza Triazolylalanine UV Ultraviolet

Introduction

Histidine kinases are a family of enzymes that catalyse the phosphorylation of the imidazole N1 (1) or N3 (2) of specific histidine residues in proteins (Fig. 1) (Janiak-Spens and West 2004). Their better-known cousins, the serine/ threonine and tyrosine kinases, have been implicated in the regulation of almost all eukaryotic cellular processes. In prokaryotes, fungi and plants, histidine kinases play critical roles in the response to environmental stimuli (Stock et al. 2000). There is also evidence that histidine kinases and their substrates are important components of mammalian cellsignalling pathways (Besant and Attwood 2005; Besant et al. 2003; Steeg et al. 2003). However, the only mammalian histidine kinase that has been well characterised is nucleoside diphosphate kinase (NDPK), which catalyses the interconversion of nucleoside di- and triphosphates via a phosphohistidyl-enzyme intermediate, as well as phosphorylating a number of proteins, including the beta subunit of some trimeric G-proteins (Attwood et al. 2007).

One mammalian histidine kinase that is of particular interest as a potential therapeutic target is histone H4 histidine kinase (HHK). The role of histone H4 phosphorylation is uncertain, but HHK activity is elevated in foetal, regenerating, and cancerous liver cells (Tan et al. 2004). Conversely, the enzyme activity is low in normal adult liver cells. The obvious inference is that HHK is intimately involved in liver cell proliferation.

In contrast to the robust serine, threonine and tyrosine phosphates, the hydrolytically labile phosphoramidate functional group in the phosphohistidines makes their identification, purification, and study challenging (Attwood et al. 2007). In particular, the availability of generic phosphotyrosine and phosphoserine/threonine antibodies has greatly facilitated the study of processes involving protein *O*-phosphorylation, but all attempts to generate an equivalent phosphohistidine antibody have thus far been unsuccessful. Where phosphohistidine itself, or the more acid-stable

Fig. 1 *N*1- (1) and *N*3-phosphohistine (2) residues and stable phosphohistidine analogues, **3–8**, shown here in their predominant protonation state at physiological pH. The *numbering* shown reflects that used by biochemists for histidine

3-thiophosphohistidine (Pirrung et al. 2000), has been used to generate immunogens for this purpose, the failure has been attributed to rapid hydrolysis of the N–P bond in vivo (Besant PG and Attwood PV, Unpublished work).

Stable phosphonate analogues of N3-phosphohistidine, specifically furan (3) (Schenkels et al. 1999) and pyrrole (4) (Tan E, Pirrung MC, Attwood PV, Unpublished work) congeners, have been synthesised previously. Antibodies raised using 4 as a hapten recognised the immunogen and the hapten but had no affinity for phosphohistidine residues in a protein context (Tan E, Pirrung MC, Attwood PV, Unpublished work). One possible explanation for this failure is that the pyrrole analogue 4 lacks the hydrogen bond-accepting nitrogen atom present in phosphohistidine residues (red in Fig. 1). It is likely that this nitrogen would

be critical for molecular recognition in a phosphohistidine antibody-antigen complex.

Accordingly, we set out to design and synthesise better phosphohistidine analogues and apply them to the generation of generic phosphohistidine antibodies. Triazolylalaninephosphonates 5–8 (Fig. 1) were immediately appealing as the C-P bond is non-hydrolysable and they retain the spatial orientation of key functional groups likely to be important for molecular recognition, in particular, the hydrogen-bond-accepting ring nitrogen. The N-methylamide and acetamide functional groups in 5/6 and 7/8, respectively, mimic the peptide bonds of native phosphohistidine residues, with the free amino and carboxyl groups ready for bioconjugation to a carrier protein through amide linkages with aspartate/glutamate and lysine residues, respectively. In addition, the robust azide-alkyne dipolar cycloaddition (Meldal and Tornoe 2008; Rostovtsev et al. 2002; Wu and Fokin 2007) offered the potential to rapidly access enantiopure analogues of both the N1- and N3-regioisomers of phosphohistidine, both of which are biologically relevant (Attwood et al. 2007; Besant and Attwood 2009).

Independently, the Muir group has recently adopted an almost identical core strategy and applied it to the solid phase synthesis of peptides containing phosphonotriazolylalanine residues (Kee et al. 2010). In a breakthrough for phosphohistidine research, they have used this approach to successfully generate antibodies specific for histidine-phosphorylated histone H4. Using native chemical ligation, they have also incorporated the phosphohistidine analogue into histone H4.

Similarly, Webb and co-workers have recently reported the synthesis of an Fmoc-protected triazolylalanine phosphonate analogue of *N*3-phosphohistidine, and its use in the solid phase synthesis of a heptapeptide based on the phosphocarrier domain of pyruvate, phosphate dikinase (McAllister et al. 2011).

Despite these recent advances, antibodies that recognise the phosphohistidine epitope in a broad protein context are yet to be discovered. Herein we describe the design and synthesis of haptens that may prove useful in achieving this goal.

Materials and methods

General

All solvents were distilled prior to use; anhydrous solvents and reagents were distilled under N₂. THF for organometallic reactions was distilled from sodium benzophenone ketyl. All reaction temperatures refer to bath temperatures. Organic extracts were dried over anhydrous MgSO₄ and

then filtered. Solvents were evaporated under vacuum or a stream of N₂.

Flash chromatography was conducted with Merck silica gel 60. Analytical TLC was performed on Whatman flexible plates (250 μ m layer, silica gel 60 F₂₅₄). Spots were visualised under UV light and by staining with ammonium molybdate or ninhydrin.

Melting points were measured on a Kofler hot-stage melting point apparatus. IR spectra were acquired using a Perkin-Elmer Spectrum One FTIR spectrometer. Mass spectra were acquired on an Applied Biosystems QSTAR pulsar I quadruple time-of-flight instrument. NMR spectra were acquired on Varian Inova 300 (300 MHz, ¹H; 75.5 MHz, ¹³C; 120 MHz, ³¹P), Bruker Avance 500 (500 MHz, ¹H; 125 MHz, ¹³C) or Bruker AV600 (600 MHz, ¹H; 150 MHz, ¹³C; 240 MHz, ³¹P) spectrometers, as indicated. All spectra were recorded in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm, relative to CHCl₃ (¹H, 7.26 ppm), CDCl₃ (¹³C, 77.0 ppm), CHD₂OD (¹H, 3.30 ppm), CD₃OD (¹³C, 49.0 ppm), and 85% H₃PO₄ (external capillary, ³¹P, 0 ppm), as appropriate. Routine assignments of ¹³C NMR spectra were made with the assistance of DEPT 135 and DEPT 90 experiments.

HPLC

HPLC was conducted using a Hewlett Packard 1050 HPLC system equipped with a multiple wavelength detector (MWD) and a 250 \times 10 mm i.d., 5 μ m, Apollo C₁₈ reversed-phase column (Grace-Davison), with a 33 mm \times 7 mm guard column of the same material. The samples were eluted at 4 mL/min with 30% (v/v) MeCN–water. UV absorbance was measured at 220 nm.

Enantioselective chromatography of the carboxylic acids **31** and **32** was carried out using a 250×4.6 mm i.d., 5 μ m Chiracel OD-H column (Diacel), eluted at 1.0 mL/min with 8% *i*-PrOH/hexanes, and detection at 220 nm.

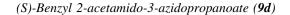
Synthesis

General procedure for the synthesis of azidoalanine derivatives

A stirred solution of the serine derivative (5–15 mmol) and triphenylphosphine (1.2 eqv.) in anhydrous THF (20–50 mL) at -78° C, under N₂, was treated with a 2.5 M solution of HN₃ in toluene (Yeager and Finney 2004) (1.2 eqv.) and DEAD (1.2 eqv.). The resulting solution was allowed to warm to room temperature. After 5 h the solution was diluted with water (100 mL), the layers were separated, and the aqueous phase was extracted with Et₂O (3 × 100 mL). The combined organic phase was washed

with brine (50 mL), dried and evaporated, and the residue was subjected to flash chromatography.

(S)-Methyl 3-azido-2-(t-butoxycarbonylamino)propanoate (9a)


This compound was synthesised according to the method of Boger (Boger et al. 1994) with slight modifications. Following the general procedure with Boc-Ser-OMe (3.61 g, 16.5 mmol), flash chromatography and elution with 1:4 Et₂O/hexanes gave **9a** as a colourless oil (2.90 g, 72%). ¹H NMR (600 MHz, CD₃OD): δ 5.61 (br d, 1H, NH), 4.28 (m, 1H, α -CH), 3.55 (s, 3H, OCH₃), 3.49 (m [apparent br d], 2H, β -CH₂), 1.23 (s, 9H, *t*-Bu). ¹³C NMR (150 MHz) δ 169.7 (CO₂), 154.6 (HNCO₂), 79.5, 77.2, 53.0, 51.9, 27.6 [(CH₃)₃]; MS (ESI) m/z: 267 [M+Na]⁺. [α]_D = +36.4° (c 2.0, CHCl₃) [lit. (Dondoni et al. 2004) +36.0° (c 0.6, CHCl₃)]. The ¹H NMR data are similar to those reported (Dondoni et al. 2004).

(S)-Methyl 2-acetamido-3-azidopropanoate (9b)

Following the general procedure with Ac-Ser-OMe (**20**) (2.00 g, 12.4 mmol) and using DIAD (3.00 mL, 15.3 mmol) instead of DEAD, flash chromatography and elution with 1:1 Et₂O/hexanes gave **9b** as a yellow oil (1.39 g, 60%). ¹H NMR (300 MHz, CDCl₃): δ 6.51 (br d, 1H, J = 5.4 Hz, NH), 4.74 (m, 1H, α -H), 3.79 (s, 1H, OCH₃, 3H), 3.73 (dd, 2H, J = 3.6, 1.2 Hz, β -H), 2.05 (s, 3H, OCCH₃). ¹³C NMR (75 MHz, CDCl₃): δ 170.1 (C=O), 169.5 (C=O), 53.8, 52.9, 52.2, 22.9 (COCH₃). MS (ESI) m/z: 187 [M+H]⁺, 209 [M+H]⁺. [α]_D = +79.3° (c 1.0, CHCl₃). [lit. (Davoli et al. 1995) +74.2° (c 1.4, CHCl₃)]. The ¹H NMR data are similar to those reported (Davoli et al. 1995).

(S)-Allyl 2-acetamido-3-azidopropanoate (9c)

Following the general procedure with Ac-Ser-OAll (22) (2.00 g, 10.7 mmol), flash chromatography and elution with 1:1 Et₂O/hexanes gave 9c as a brown oil (1.38 g, 61%). $R_{\rm f}=0.40$ (Et₂O); IR (thin film) cm⁻¹: 3,274 (NH), 2,107 (N₃) 1,743 (OC=O), 1,660 (HNC=O). ¹H NMR (500 MHz, CDCl₃): δ 6.84 (d, 1H, J = 7.5 Hz, NH), 5.83 (m, 1H, HC=CH₂), 5.27 (dd, 1H, J = 17.0, 1.5 Hz, HC=CH2 trans), 5.20 (dd, 1H, J = 10.5, 1.0 Hz, HC=CH2 cis), 4.72 (m, 1H, α -H), 4.60 (dd, 2H, J = 4.5, 1.5 Hz, OCH₂), 3.68 (d, 2H, β -H), 1.99 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ 170.2 (C=O), 169.2 (C=O), 130.9 (HC=CH₂), 119.0 (HC=CH₂), 66.3 (OCH₂), 52.1, 52.0, 22.6 (CH₃). MS (ESI) m/z: 235 [M+Na]⁺. HRMS (ESI): observed, 235.0808, [C₈H₁₃NO₄+H]⁺ requires 235.0802. [α]_D = +16.3° (c 1.0, CH₃CI).

Following the general procedure with Ac-Ser-OBn (23) (2.00 g, 12.4 mmol), and DIAD (2.00 mL, 10.2 mmol) instead of DEAD, flash chromatography and elution with 1:1 Et₂O/hexanes gave **9d** as a yellow oil (1.35 g, 61%). $R_{\rm f} = 0.45$ (Et₂O). IR (thin film) cm⁻¹: 3,293 (NH), 2,106 (N_3) , 1,743 (OC=O), 1,655 (HNC=O). ¹H NMR (500 MHz, CDCl₃): δ 7.26 (m, 5H, Ar), 7.15 (br d, J = 7.5 Hz, NH), 5.11 (d, 2H, OCH₂), 4.76 (m, 1H, α -H), 3.63 (dd, 2H, J = 4.0 Hz, 1.5 Hz, β -H), 1.95 (s, 3H, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (C=O), 169.2 (C=O), 134.5 (Ar), 128.2 (ArH), 128.1 (ArH), 127.8 (ArH), 67.2 (OCH₂), 51.9, 51.8, 22.2 (CH₃). MS (ESI) m/z: 263 $[M+H]^+$, 285 $[M+Na]^+$. HRMS (ESI): observed. 263.1133, $[C_{12}H_{14}N_4O_3+H]^+$ requires 263.1139. $[\alpha]_D = +22.8^{\circ} (c \ 1.0, CHCl_3).$

(S)-Benzyl 3-azido-2-(t-butoxycarbonylamino)propanoate (**9e**)

This compound has been prepared previously by a similar method (Kogan and Rawson 1992). Following the general procedure with Boc-Ser-OBn (1.50 g, 5.08 mmol), flash chromatography and elution with 1:4 Et₂O/hexanes gave **9e** as a colourless oil (1.18 g, 72%). $R_{\rm f} = 0.20$ (1:4 Et₂O/hexanes). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (m, 5H, Ar), 5.53 (br d, J = 7.6 Hz, 1H, NH), 5.19 (d, J = 2.8 Hz, 2H, OCH₂) 4.50 (m, 1H, α -H), 3.71 (d, J = 3.6 Hz, 2H, β -H), 1.44 (s, 9H, t-Bu). ¹³C NMR (100 MHz, CDCl₃): δ 169.3 (CO₂), 154.7 (NCO₂), 134.6 (ArC), 128.24 (ArH), 128.17 (ArH), 127.9 (ArH), 80.0 [OC(CH₃)₃], 67.2 (OCH₂), 53.3 (α), 52.2 (β), 27.8 [(CH₃)₃]. MS (ESI) m/z: 267 [M+Na]⁺. [α]_D = +8.2° (c 1.0, CHCl₃) [lit. (Kee et al. 2010) +8.0° (c 1.0, CHCl₃)]. The ¹H and ¹³C NMR data are similar to those reported (Kee et al. 2010).

(S)-Benzyl 2-(((9H-fluoren-9-yl)methoxy) carbonylamino)-3-azidopropanoate (9f)

Following the general procedure with Fmoc-Ser-OBn (**36**) (1.51 g, 5.76 mmol), flash chromatography and elution with 1:4 Et₂O/hexanes gave **9f** as a white solid (1.38 g, 65%). mp 70–72°C. $R_{\rm f}=0.15$ (1:1 Et₂O/hexanes). IR (thin film) cm⁻¹: 3,337 (NH), 2,107 (N₃) 1,650–1,750 (br, C=O + NC=O). ¹H NMR (500 MHz, CDCl₃): δ 7.80 (d, J=7.5 Hz, 2H, Ar), 7.64 (br d, J=7.0 Hz, 2H, Ar), 7.33–7.46 (m, 9H, Ar), 5.85 (br d, J=7.5 Hz, 1H, NH), 5.26 (d, J=4.5 Hz, 2H, OCH₂Ph), 4.64 (m, 1H, α-H), 4.45 (m, 2H, NCO₂CH₂), 4.26 (t, J=7.5 Hz, 1H, H9′), 3.79 (br s, 2H, β-H). ¹³C NMR (125 MHz, CDCl₃): δ 169.2 (CO₂), 155.6 (NCO₂), 143.6, 143.5, 141.2, 134.8 (ArC), 128.6 (ArH), 128.2 (ArH), 127.6 (ArH), 127.0, 125.0, 119.9, 67.8

(OCH₂), 67.2 (OCH₂), 53.9 (α), 52.4 (β), 46.9 (C9'). MS (ESI) m/z: 443 [M+H]⁺, 465 [M+Na]⁺. HRMS (ESI): observed, 465.1539, [C₂₅H₂₂N₄O₄+Na]⁺ requires 465.1533. [α]_D = +25.7° (c 1.0, CHCl₃).

(S)-Benzyl 3-hydroxy-2-(t-butoxycarbonylamino) propanoate [Boc-Ser-OBn]

Benzyl bromide (1.80 mL, 15.2 mmol) was added to a solution of Boc-Ser-OH (3.00 g, 14.6 mmol) and DIPEA (1.30 mL, 15.2 mmol) in DMF (20 mL) under N₂ at 0°C. The resulting solution was allowed to warm to room temperature, stirred for 18 h, diluted with sat. aq. NH₄Cl (30 mL), and then extracted with EtOAc (3 \times 50 mL). The organic extract was washed with brine (20 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 1:4 EtOAc/hexanes gave Boc-Ser-OBn as a colourless oil (3.66 g, 85%). ¹H NMR (500 MHz, CDCl₃): δ 7.34–7.27 (m, 5H, Ar), 5.71 (d, J = 8.0 Hz, 1H, NH), 5.15 (d, J = 2.5 Hz, 2H, OCH₂Ph), 4.39 (m, 1H, α -H), 3.95 (m [apparent br d], 1H, β -Ha), 3.84 $(dd, J = 11.0, 3.5 \text{ Hz}, 1H, \beta\text{-Hb}), 3.50 \text{ (br s, 1H OH)}, 1.42$ (s, 9H, t-Bu); ¹³C NMR (125 MHz, CDCl₃): δ 170.8 (CO₂), 155.7 (NCO₂), 135.1 (ArC), 128.4 (ArH), 128.2 (ArH), 127.9 (ArH), 80.0 [$C(CH_3)_3$], 67.1 (O CH_2 Ph), 62.9 (β), 55.7 (α), 28.1 [C(CH₃)₃]. MS (ESI) m/z: 296 [M+H]⁺, 318 $[M+Na]^+$. $[\alpha]_D = -19.6^\circ$ (c 1.0, MeOH) [lit. (Nakata et al. 1996) -19.0° (c 1.0, CHCl₃)]. The NMR data are similar to those reported (Tummatorn et al. 2007).

Diethyl (triisopropylsilyl)ethynylphosphonate

Ethyl bromide (1.00 mL, 13.7 mmol) was added dropwise to a suspension of stirred Mg turnings (416 mg, 17.0 mmol) in THF (10 mL) at 0° C under N_2 and the resulting mixture was heated under reflux under N2 for 30 min. The ethynylmagnesium bromide solution thus prepared was added dropwise via canula to a solution of TIPS-acetylene (3.00 mL, 13.4 mmol) in THF (10 mL) at 0°C under N₂. The reaction mixture was allowed to warm to room temperature and stirring was continued for 1 h before being cooled to 0°C and treated dropwise with diethyl chlorophosphite (2.20 mL, 15.2 mmol). The resulting solution was allowed to warm to room temperature and after 1 h was diluted with sat. aq. NH₄Cl (30 mL) and extracted with Et₂O (3 \times 50 mL). The organic extract was washed with brine (30 mL), dried and concentrated under reduced pressure, and the residue was subjected to flash chromatography. Elution with 1:4 EtOAc/hexane gave the title phosphonate as pale yellow oil (3.49 g, 80%). $R_{\rm f} = 0.80$ (1:1 EtOAc/hexanes). ¹H NMR (600 MHz, CDCl₃) δ : 4.11 (m, 4H, OCH₂CH₃), 1.32 (dt, $J_{H,P} = 0.6$, J = 7.1 Hz, 6H, OCH₂CH₃), 1.03–1.10 (m, 21H, *i*-Pr). ¹³C NMR (150 MHz, CDCl₃): δ 106.4 (d, $J_{C,P}$ = 37.6 Hz, C2), 96.3 (d, $J_{C,P}$ = 269.4 Hz, C1), 63.0 (d $J_{C,P}$ = 5.4 Hz), 18.3 (*i*-Pr CH₃), 15.9 (d, $J_{C,P}$ = 6.8 Hz, OCH₂CH₃), 10.7 (CSi). ³¹P NMR (120 MHz): δ -7.38; MS (ESI) m/z: 319 [M+H]⁺, 341 [M+Na]⁺. This compound has been reported (Lecercle et al. 2006) but no characterisation data were given.

Diethyl ethynylphosphonate (10)

A solution of diethyl (triisopropylsilyl)ethynylphosphonate (1.00 g, 3.14 mmol) and KF (0.38 g, 6.5 mmol) in MeOH (10 mL) was stirred for 2 h and then concentrated under reduced pressure. The residue was diluted with water and extracted with Et₂O (3 \times 40 mL). The organic extract was washed with brine (30 mL), dried, and concentrated under reduced pressure. The residue was subjected to flash chromatography. Elution with 1:1 Et₂O/hexane gave 8 as a pale yellow oil (310 mg, 61%). ¹H NMR (500 MHz, CDCl₃) δ : 4.04 (m, 4H, CH₂), 3.00 (d, J = 13.5 Hz 1H, CH), 1.24 (dt, $J_{HP} = 0.5 J = 7.0 \text{ sHz}$, 6H, $2 \times \text{CH}_3$). ¹³C NMR (125 MHz, CDCl₃): δ 88.1 (d, J = 50.6 Hz, CH), 73.8 (d, J = 289 Hz, CP), 63.1 (d, J = 5.5 Hz, OCH₂CH₃), 15.7 (d, J = 7.0 Hz, OCH₂CH₃). MS (ESI) m/z: 163 [M+H]⁺. The ¹H NMR data are similar to those reported (McAllister et al. 2011). This compound was also prepared using a published method (Vuilhorgne et al. 2003).

General procedure for thermal Huisgen cycloadditions

A stirred solution of the azide 9 and diethyl ethynylphosphonate 10 (1 eqv.) in toluene (5–10 mL), under N_2 , was heated under reflux for 5 h. The toluene was evaporated and the residue was subjected to flash chromatography (details below).

Thermal Huisgen cycloaddition of 9a

Following the general procedure with azide **9a** (0.150 g, 0.614 mmol), flash chromatography and elution with (1:1 EtOAc/hexanes) gave **11a** as pale yellow oil (53 mg, 21%), identical with the material described below. Further elution with EtOAc gave **12a** as pale yellow oil (144 mg, 58%), identical with the material described below.

Thermal Huisgen cycloaddition of 9b

Following the general procedure with azide **9b** (1.00 g, 5.37 mmol), flash chromatography and elution with (7:3 EtOAc/hexanes) gave **11b** as pale yellow oil (486 mg, 26%), identical with the material described below. Further elution with EtOAc gave **12b** as pale yellow oil (1.12 g, 60%), identical with the material described below.

Thermal Huisgen cycloaddition of 9c

Following the general procedure with azide **9c** (1.00 g, 4.71 mmol), flash chromatography and elution with (7:3 EtOAc/hexanes) gave **11c** as pale yellow oil (722 mg, 41%), identical with the material described below. Further elution with EtOAc gave **12c** as pale yellow oil (774 mg, 44%), identical with the material described below.

Thermal Huisgen cycloaddition of 9d

Following the general procedure with azide **9d** (1.00 g, 3.81 mmol), flash chromatography and elution with 1:1 EtOAc/hexanes gave **11d** as pale yellow oil (697 mg, 43%), identical with the material described below. Further elution with EtOAc gave **12d** as a pale yellow oil (729 mg, 45%), identical with the material below.

Thermal Huisgen cycloaddition of **9e**

Following the general procedure with azide **9e** (0.200 g, 0.624 mmol), flash chromatography and elution with (1:1 EtOAc/hexanes) gave **11e** as pale yellow oil (123 mg, 41%), identical with the material described below. Further elution with EtOAc gave **12e** as pale yellow oil (129 mg, 42%), identical with the material described below.

Thermal Huisgen cycloaddition of **9f**

Following the general procedure with azide **9f** (0.100 g, 0.226 mmol), flash chromatography and elution with 2:3 EtOAc/hexanes gave the **11f** as a pale yellow oil (53 mg, 39%), identical with the material described below. Further elution with EtOAc gave the **12f** as pale yellow oil (56 mg, 41%), identical with the material described below.

General procedure for Ru(II)-catalysed azide-alkyne cycloadditions

Cp*RuCl(PPh₃)₂ (1.5 mol%) was added to a solution of the azide 9 (0.2–1.2 mmol) and 10 (1 eqv.) in toluene (5–20 mL) under N₂. The resulting solution was stirred at 60°C for 24 h, then diluted with water (10–20 mL), and extracted with EtOAc (3 × 30–100 mL). The extract was washed with brine (10–20 mL), dried and evaporated, and the residue was subjected to flash chromatography (details) below.

(S)-Methyl 2-(t-butoxycarbonylamino)-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Boc-5-PO(OEt)₂Tza-OMe] (11a)

Following the general procedure with azide **9a** (0.10 g, 0.41 mmol), flash chromatography and elution with 1:1

EtOAc/hexanes gave 11a as pale yellow oil (93 mg, 56%). $R_{\rm f} = 0.15$ (EtOAc/hexanes 1:1); IR (thin film) cm⁻¹: 3,306 (NH), 1,747 (m, OC=O), 1,715 (s, NC=O); 1H NMR (600 MHz, CDCl₃): δ 7.95 (s, 1H, triazolyl), 5.69 (br d, J = 6.0 Hz, 1H, NH), 4.88–5.00 (m, 3H, α -CH and β -CH₂), 4.17 (m, 4H, OCH₂CH₃), 3.76 (s, 3H, OCH₃), 1.36 (s, 9H, t-Bu), 1.35 (apparent q J = 7.2 Hz, 6H, OCH₂CH₃). ¹³C NMR (125 MHz, CDCl₃): δ 169.5 (CO₂), 154.8 (NCO_2) , 140.0 (d, $J_{CP} = 20.4$ Hz, triazolyl CH), 126.7 (d, $J_{\text{C.P}} = 219.6 \text{ Hz}, \text{ CP}, 79.8 [OCCH_3)_3], 63.4 \text{ (d,}$ $J_{\text{C.P}} = 5.9 \text{ Hz}$, OCH₂CH₃a), 63.3 (d, $J_{\text{C.P}} = 5.8 \text{ Hz}$, $OCH_2CH_3b)$, 53.2 (α), 52.5 (OCH_3), 50.4 (β), 27.8 $[CCH_3)_3$, 15.9 (d, $J_{CP} = 4.4 \text{ Hz}$, OCH_2CH_3a), 15.8 (d, $J_{\rm CP} = 4.5 \text{ Hz}, \text{ OCH}_2\text{CH}_3\text{b}); ^{31}\text{P NMR (240 MHz)}: \delta 4.03.$ MS (ESI) *m/z*: 407 [M+H]⁺, 429 [M+Na]⁺; HRMS (ESI): 407.1688, $[C_{15}H_{27}N_4O_7P+H]^+$ 407.1690. $[\alpha]_D = -31.0^{\circ}$ (c 1.7, EtOAc). Further elution with EtOAc gave 12a as pale yellow oil (35 mg, 21%), identical with the material described below.

(S)-Methyl 2-acetamido-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-5-PO(OEt)₂Tza-OMe] (11b)

Following the general procedure with azide **9b** (0.200 g, 1.07 mmol), flash chromatography and elution with 7:3 EtOAc/hexanes gave 11b as pale yellow oil (213 mg, 57%). $R_f = 0.35$ (EtOAc). IR (thin film) cm⁻¹: 3,283 (NH), 1,748 (OC=O), 1,671 (NC=O). 1H NMR (500 MHz, CDCl₃): δ 7.81 (s, 1H, triazolyl), 7.51 (br d, 1H, $J = 8.0 \text{ Hz}, \text{ NH}, 4.99 \text{ (dd, 1H, } J = 8.0, 4.0 \text{ Hz}, \alpha\text{-H}, 4.88$ (dd, 1H, J = 14.0, 4.5 Hz, β -Ha), 4.75 (dd, 1H, J = 14.0, 8.0 Hz, β -Hb), 4.05 (m, 4H, 2 × OCH₂), 3.58 (s, 3H, OCH₃) 1.79 (s, 3H, NCOCH₃), 1.20 (m, 6H, $2 \times \text{CH}_2\text{C}H_3$). ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (C=O), 169.1 (C=O), 139.9 (d, $J_{C,P} = 20.4$ Hz, triazolyl CH), 126.7 ($J_{C.P} = 220.4 \text{ Hz}$, CP), 63.6 (d, $J_{C.P} = 5.9 \text{ Hz}$, OCH₂), 52.5, 51.8, 50.0, 22.2 (acetyl CH₃), 15.81 $(J_{C,P} = 3.6 \text{ Hz}, OCH_2CH_3a), 15.76 (J_{C,P} = 3.8 \text{ Hz},$ OCH₂CH₃b). ³¹P NMR (120 MHz, CDCl₃): δ 4.36. MS (ESI) m/z: 349 [M+H]⁺, 371 [M+Na]⁺. HRMS (ESI): 371.1097, $[C_{12}H_{21}N_4O_6P+Na]^+$ observed, requires 371.1091. $[\alpha]_D = +15.7^{\circ}$ (c 1.0, CH₃Cl). Further elution with EtOAc gave 12b as pale yellow oil (71 mg, 19%), identical with the material described below.

(S)-Allyl 2-acetamido-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-5-PO(OEt)₂Tza-OAll] (11c)

Following the general procedure with azide **9c** (250 mg, 1.2 mmol), flash chromatography and elution with 1:1 EtOAc/hexanes gave **11c** as pale yellow oil (323 mg, 73%). $R_{\rm f} = 0.30$ (EtOAc); IR (thin film) cm⁻¹: 3,284

(NH), 1.747 (OC=O), 1.682 (NC=O), ¹H NMR (500 MHz, CDCl₃): δ 7.88 (s, 1H, triazolyl), 7.19 (br d, 1H, $J = 8.0 \text{ Hz}, \text{ NH}, 5.78 \text{ (m, 1H, } HC=CH_2), 5.23 \text{ (ddd, 1H, }$ J = 17.0, 2.5, 1.0 Hz HC=C H_2 trans), 5.15 (ddd, 1H, $J = 10.5, 2.5, 1.0 \text{ Hz}, \text{ HC=C}H_2 \text{ cis}), 5.11 \text{ (m, 1H, }\alpha\text{-H)}$ 4.95 (dd, 1H, J = 14.0, 4.5 Hz, β -Ha), 4.86 (dd, 1H, $J = 14.5, 8.0 \text{ Hz}, \beta\text{-Hb}, 4.56 \text{ (m, 2H, allyl OCH₂)}, 4.13$ $(m, 4H, 2 \times OCH_2CH_3), 1.88 (s, 1H, NCOCH_3), 1.29 (m,$ 6H, $2 \times \text{OCH}_2\text{C}H_3$). ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (C=O), 168.5 (C=O), 140.1 (d, $J_{C,P} = 20.4 \text{ Hz}$, triazolyl CH), 131.0, 126.9 (d, $J_{C,P} = 220.4 \text{ Hz}$, CP), 118.8, 66.3, 63.73 ($J_{C,P} = 4.5 \text{ Hz}$, OCH₂CH₃a), 63.69 $(J_{C.P} = 4.7 \text{ Hz}, OCH_2CH_3b), 52.1, 50.2, 22.5 \text{ (acetyl)}$ CH₃), 16.01 (d, $J_{C,P} = 3.6$ Hz, OCH₂CH₃a), 15.96 (d, $J_{\text{C,P}} = 3.8 \text{ Hz}, \text{OCH}_2\text{CH}_3\text{b}).$ ³¹P NMR (120 MHz, CDCl₃): δ 4.48. MS (ESI) m/z: 375 $[M+H]^+$, 397 $[M+Na]^+$. HRMS (ESI): observed, 375.1422, $[C_{14}H_{23}N_4O_6P+H]^+$ requires 375.1428. $[\alpha]_D = +21.0^{\circ}$ (c 1.0, CH₃Cl). Further elution with EtOAc gave 12c as pale yellow oil (44 mg, 10%), identical with the material described below.

(S)-Benzyl 2-acetamido-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-5-PO(OEt)₂Tza-OBn] (11d)

Following the general procedure with azide **9d** (0.200 g, 0.763 mmol), flash chromatography and elution with 3:2 EtOAc/hexanes gave 11d as pale yellow oil (262 mg, 81%). $R_f = 0.40$ (EtOAc). IR (thin film) cm⁻¹: 3,290 (NH), 1,747 (OC=O), 1,683 (NC=O). ¹H NMR (500 MHz, CDCl₃): δ 7.83 (s, 1H, triazolyl), 7.44 (br d, 1H, J = 8.5 Hz, NH, 7.16 (m, 5H, Ar), 5.09 (dd, 1H, J = 8.0,4.5 Hz, α -H), 5.02 (d, 2H, J = 6.5 Hz, OC H_2 Ph), 4.90 (dd, 1H, J = 14.0, 4.5 Hz, β -Ha), 4.81 (dd, 1H, J = 14.0, 8.0 Hz, β -Hb), 4.00 (m, 4H, OC H_2 CH₃), 1.81 (s, 1H, NCOCH₃), 1.18 (m, 6H, OCH₂CH₃) ¹³C NMR (125 MHz, CDCl₃): δ 170.1 (C=O), 168.5 (C=O), 140.0 (d, $J_{\text{C.P}} = 20.6 \text{ Hz}$, triazolyl CH), 134.5, 128.1, 128.0, 127.8, 126.6 (d, $J_{C.P} = 220.4$ Hz, CP), 67.2 (OCH₂Ph), 63.45 (d, $J_{\text{C,P}} = 6.2 \text{ Hz}, \text{ OCH}_2\text{CH}_3\text{a}, 63.40 \text{ (d, } J_{\text{C,P}} = 6.0 \text{ Hz},$ OCH₂CH₃b), 52.8, 50.0, 22.1 (acetyl CH₃), 15.70 (d, $J_{CP} = 4.2 \text{ Hz}$, OCH₂CH₃a), 15.65 (d, $J_{CP} = 4.2 \text{ Hz}$, OCH_2CH_3b). ³¹P NMR (120 MHz, CDCl₃): δ 4.35. MS (ESI) m/z: 425 [M+H]⁺, 447 [M+Na]⁺. HRMS (ESI): $[C_{18}H_{25}N_4O_6P+H]^+$ 425.1590, requires $425.1584 \ [\alpha]_D = +14.0^{\circ} \ (c \ 1.0, \text{CH}_3\text{Cl}).$

(S)-Benzyl 2-(t-butoxycarbonylamino)-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Boc-5-PO(OEt)₂Tza-OBn] (11e)

Following the general procedure with azide **9e** (0.200 g, 0.624 mmol), flash chromatography and elution with 3:2

EtOAc/hexanes gave 11e as pale yellow oil (241 mg, 80%). $R_f = 0.20$ (1:1 EtOAc/hexanes). IR (thin film) cm⁻¹: 3,305 (NH), 1,747 (m, C=O), 1,716 (s, NC=O). ¹H NMR (500 MHz, CDCl₃): δ 7.94 (s, 1H, triazolyl), 7.29 (m, 5H, Ar), 5.75 (br s, 1H, NH), 5.15 (s, 2H, OCH₂Ph), 4.88–5.00 (m, 3H, α -CH + β -CH₂), 4.14 (m, 4H, $2 \times OCH_2CH_3$), 1.34 (s, 9H, t-Bu), 1.27–1.36, (m, 6H, $2 \times \text{OCH}_2\text{C}H_3$). ¹³C NMR (125 MHz, CDCl₃): δ 169.1 (CO_2) , 155.0 (NCO_2) , 140.3 $(d, J_{CP} = 20.4 \text{ Hz}, \text{ triazolyl})$ CH), 134.8 (ArC), 128.5 (ArH), 128.4 (ArH), 128.2 (ArH), 127.0 (d, $J_{C,P} = 219.6$ Hz, CP), 80.1 [OC(CH₃)₃], 67.6 (OCH₂Ph), 63.64 (d, $J_{C,P} = 5.7$ Hz, OCH₂CH₃a), 62.58 (d, $J_{C.P} = 5.8$ Hz, OCH₂CH₃b), 53.5 (α), 50.6 (β), 28.1 [C(CH₃)₃], 16.09 (d, $J_{C,P} = 4.8 \text{ Hz}$, OCH₂CH₃a), 16.09 (d, $J_{C,P} = 4.9 \text{ Hz}$, OCH_2CH_3b). ³¹P NMR (120 MHz, CDCl₃): δ 4.60. MS (ESI) m/z: 483 [M+H]⁺, 505 [M+Na]⁺. HRMS (ESI): observed, 505.1820, $[C_{21}H_{31}N_4O_7P+N_8]^+$ requires 505.1823. $[\alpha]_D = +9.2^\circ$ (c 1.0, CHCl₃).

(S)-Benzyl 2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Fmoc-5-PO(OEt)₂Tza-OBn] (**11f**)

Following the general procedure with azide 9f (0.100 g, 0.226 mmol), flash chromatography and elution with 2:3 EtOAc/hexanes gave 11f as pale yellow oil (107 mg, 78%). IR (thin film) cm⁻¹: 3,272 (NH), 1,700–1,750 (br, OC=O + NC=O). The NMR spectra showed the presence of two rotamers. ¹H NMR (500 MHz, CDCl₃): δ [7.99, 7.98 (2 s, 1H, triazolyl)], 7.74 (d, J = 7.5 Hz, 2H, Ar) 7.54 (d, J = 7.5 Hz, 2H, Ar), 7.23-7.43 (m, 9H, Ar), [6.42, 1.2]6.26 (2 br d, J = 7.5 Hz, 1H, NH)], 5.25 (d, J = 5.0 Hz, 2H, OCH₂Ph), 4.98–5.21 (m, 3H, α -CH + β -CH₂), 4.07-4.70 (m, 7H, NCO₂CH₂ + H9' + 2 × OCH₂CH₃), 1.33 (t, J = 7.0 Hz, 3H, OCH₂CH₃a), 1.31 (t, J = 9.5 Hz, 3H, OCH₂CH₃b). ¹³C NMR (125 MHz, CDCl₃): δ [168.7, 168.4 (CO₂)], [156.9, 155.8, (NCO₂)], 143.7, 143.5, 141.44, 141.39, 141.15, 141.14, 140.59, 140.56, [140.34, 140.27 (2 × d, $J_{C.P}$ = 20.3 Hz, triazolyl CH)], [134.7, 134.6 (ArC)], 130.3, 128.3, 128.6 (ArH), 128.53 (ArH), 128.47 (ArH), 127.7, 126.63, 126.62, [127.3, 127.2 (2 d, $J_{\text{C.P}} = 221.4 \text{ Hz}, \text{ CP}$, 127.01, 126.99, 126.5, 126.4, 120.0, 119.9, 67.9, 67.4, 65.0, 64.0, [63.99, 63.92 (2 d, $OCH_2CH_3a)$], [63.8, $J_{\rm CP} = 5.9 \; {\rm Hz},$ 63.7 $J_{\text{C.P}} = 5.5 \text{ Hz}, \text{ O}C\text{H}_2\text{CH}_3\text{b}$], [54.3, 54.0 (α)], [50.5, 50.4 (β)], 46.9 (C9'), 16.11 (d, $J_{C,P} = 6.0 \text{ Hz}$, OCH₂CH₃a), 16.07 (d, $J_{C,P} = 5.2 \text{ Hz}$, OCH₂CH₃b). ³¹P NMR (120 MHz, CDCl₃): δ 4.54. MS (ESI) m/z: 605 [M+H]⁺, 627 [M+Na]⁺. HRMS (ESI): observed, 605.2168, $[C_{31}H_{33}N_4O_7P+H]^+$ requires 605.2160. $[\alpha]_D = +2.3^\circ$ (c 1.0, CHCl₃).

General procedure for Cu(I)-catalysed azide-alkyne cycloadditions

CuSO₄.5H₂O (10 mol %) was added to a solution of the azide **9** (0.6–1.3 mmol), **10** (1 eqv.) and sodium ascorbate (10 mol %) in 1:1 *t*-BuOH/water (5–15 mL). The resulting solution was stirred for 24 h, diluted with water (10–20 mL), and extracted with DCM or EtOAc (3 \times 30–100 mL). The organic extract was washed with brine (10–20 mL), dried and evaporated, and the residue was subjected to flash chromatography (details below).

(S)-Methyl 2-(t-butoxycarbonylamino)-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl) propanoate [Boc-4-PO(OEt)₂Tza-OMe] (12a)

Following the general procedure with 9a (0.200 g, 0.819 mmol), flash chromatography and elution with EtOAc gave 12a as pale yellow oil (316 mg, 95%). $R_{\rm f} = 0.10$ (EtOAc/hexanes 1:1); IR (thin film) cm⁻¹: 3,293 (NH), 1,744 (m, C=O), 1,716 (s, NC=O). H NMR (600 MHz, CDCl₃): δ 8.03 (s, 1H, triazolyl), 5.78 (br d, J = 7.7 Hz, 1H, NH), 4.76 (dd, J = 13.5, 4.5 Hz, 1H, β -Ha), 4.70 (dd, J = 14.0, 6.5 Hz, 1H, β -Hb), 4.55 (m, 1H, α -H), 3.99 (m, 4H, OC H_2 CH₃), 3.59 (s, 3H, OCH₃), 1.21 (s, 9H, t-Bu), 1.144, (t, J = 7.2 Hz, 3H, OCH₂CH₃a), 1.140, (t, J = 7.2 Hz, 3H, OCH₂CH₃b); ¹³C NMR (150 MHz, CDCl₃): δ 169.1 (CO₂), 154.8 (NCO₂), 136.7 (d, $J_{\text{C,P}} = 239 \text{ Hz}, \text{CP}$), 131.6 (d, $J_{\text{C,P}} = 32 \text{ Hz}$, triazolyl CH), 80.0 [OCCH₃)₃], 62.59 (d, $J_{C,P} = 5.7 \text{ Hz}$, OCH₂CH₃a), 62.58 (d, $J_{C,P} = 5.9 \text{ Hz}$, OCH₂CH₃b), 53.3 (α), 52.5 (OCH_3) , 50.1 (β), 27.7 [CCH₃)₃], 15.8 (d, $J_{CP} = 6.5$ Hz, OCH₂CH₃); ³¹P NMR (240 MHz): δ 6.97. MS (ESI) m/z: 407 ([M+H]⁺; HRMS (ESI): observed, 407.1696, $[C_{15}H_{27}N_4O_7P+H]^+$ requires 407.1690. $[\alpha]_D = -15.9^\circ$ (c 2.2, EtOAc).

(S)-Methyl 2-acetamido-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-4-PO(OEt)₂Tza-OMe] (12b)

Following the general procedure with **9b** (0.250 g, 1.34 mmol), flash chromatography and elution with EtOAc gave **12b** as pale yellow oil (425 mg, 91%). $R_{\rm f} = 0.10$ (EtOAc). IR (thin film) cm⁻¹: 3,272 (NH), 1,747 (OC=O), 1,673 (NC=O). ¹H NMR (500 MHz, CDCl₃): δ 8.11 (s, 1H, triazolyl), 7.57 (br d, 1H, J = 7.5 Hz, NH), 4.78 (m, 2H, β-H), 4.69 (dd, 1H, J = 14.0, 7.0 Hz, α-H), 3.96 (m, 4H, 2 × OCH₂CH₃), 3.55 (s, 3H, OCH₃) 1.78 (s, 3H, acetyl CH₃), 1.121 (t, 3H, J = 7.0 Hz, OCH₂CH₃a), 1.118 (t, 3H, J = 7.0 Hz, OCH₂CH₃b). ¹³C NMR (125 MHz,): δ 170.5 (C=O), 168.9 (C=O), 136.3 (d, $J_{\rm C,P} = 240.2$ Hz, CP), 131.6 (d, $J_{\rm C,P} = 33.1$ Hz, triazolyl CH), 62.7 (d, $J_{\rm C,P} = 5.8$ Hz,

OCH₂CH₃), 52.4, 52.0, 49.8, 22.0 (acetyl CH₃), 15.70 (d, $J_{C,P} = 0.6$ Hz, OCH₂CH₃a), 15.65 ($J_{C,P} = 0.75$ Hz, OCH₂CH₃b). ³¹P NMR (120 MHz, CDCl₃): δ 7.71. MS (ESI) m/z: 349 [M+H]⁺, 371 [M+Na]⁺. HRMS (ESI): observed, 371.1086, [C₁₂H₂₁N₄O₆P+Na]⁺ requires 371.1091. [α]_D = +62.0° (c 1.0, CH₃Cl).

(S)-Allyl 2-acetamido-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-4-PO(OEt)₂Tza-OAll] (12c)

Following the general procedure with 9c (250 mg, 1.2 mmol), flash chromatography and elution with EtOAc gave **12c** as pale yellow oil (371 mg, 84%). $R_f = 0.15$ (EtOAc); IR (thin film) cm⁻¹: 3,271 (NH), 1,745 (OC=O), 1,674 (NC=O). ¹H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H triazolyl), 7.21 (br d, 1H, J = 7.5 Hz, NH), 5.80 (m, 1H, $HC=CH_2$), 5.25 (ddd, 1H, J = 17.5, 3.0, 1.5 Hz $HC=CH_2$ trans), 5.19 (ddd, 1H, J = 10.5, 2.5, 1.5 Hz HC=C H_2 cis), 4.93 (m, 1H, α -H), 4.85 (m, 2H, β -H), 4.57 (apparent dt, 2H, J = 5.5 Hz, 1.0 Hz, allylic CH₂), 4.09 (m, 4H, OCH₂CH₃), 1.92 (s, 1H, NCOCH₃), 1.251 (t, 3H, J = 7.5 Hz, OCH₂CH₃a), 1.248 (t, 3H, J = 7.5 Hz, OCH₂CH₃b). ¹³C NMR (125 MHz, CDCl₃): δ 170.6 (C=O), 168.3 (C=O), 136.9 (d, $J_{CP} = 239.8 \text{ Hz}$, CH), 131.8 (d, $J_{C,P} = 33.1$ Hz, triazolyl CH), 130.9 (HC=CH₂), 119.2 (HC= CH_2), 66.6 (allylic), 63.0 (d, $J_{C,P} = 0.9 \text{ Hz}$, OCH_2CH_3a), 62.9 (d, $J_{C.P} = 0.8 \text{ Hz}$, OCH_2CH_3b), 52.4, 50.2, 22.5 (acetyl CH₃), 16.02 (d, $J_{CP} = 1.3$ Hz, OCH₂- CH_3a), 15.96 (d, $J_{C.P} = 1.1 \text{ Hz}$, OCH_2CH_3b). ³¹P NMR (120 MHz, CDCl₃): δ 7.52. MS (ESI) m/z: 375 [M+H]⁺. HRMS (ESI): observed, 375.1433, $[C_{14}H_{23}N_4O_6P+H]^+$ requires 375.1428. $[\alpha]_D = +25.3^{\circ}$ (c 1.0, CH₃Cl).

(S)-Benzyl 2-acetamido-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Ac-4-PO(OEt)₂Tza-OBn] (12d)

Following the general procedure with 9d (0.200 mg, 0.763 mmol), flash chromatography and elution with EtOAc gave 12d as pale yellow oil (282 mg, 87%). $R_{\rm f} = 0.20$ (EtOAc). IR (thin film) cm⁻¹: 3,271 (NH), 1,744 (OC=O), 1,675 (NC=O). 1 H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H, triazolyl), 7.67 (br d, 1H, J = 8.0 Hz, NH), 7.15 (m, 5H, Ar), 5.00 (s, 2H, OCH₂Ph), 4.88 (dd, 1H, J = 7.0, 4.5 Hz, α -H), 4.81 (dd, 1H, J = 14.0, 4.5 Hz, β -Ha), 4.71 (dd, 1H, J = 14.0, 7.5 Hz, β -Hb), 3.98 (m, 4H, OCH₂CH₃) 1.79 (s, 1H, NCOCH₃), 1.13 (t, 6H, J = 7.0 Hz, OCH₂CH₃) ¹³C NMR (125 MHz, CDCl₃): δ 170.3 (C=O), 168.3 (C=O), 136.3 (d, $J_{CP} = 239.8 \text{ Hz}$, CP), 134.4 (ArC), 131.5 (d, $J_{C,P} = 33.1$ Hz, triazolyl CH), 128.0 (ArH), 127.9 (ArH), 127.7 (ArH), 67.1 (benzylic), 62.5, (d, $J_{C.P} = 5.7 \text{ Hz}$, OCH₂CH₃) 52.1, 49.7, 22.0 (acetyl CH₃), 15.6 (d, $J_{C,P} = 6.4 \text{ Hz}$, OCH₂CH₃). ³¹P NMR

(120 MHz, CDCl₃): δ 7.73. MS (ESI) m/z: 425 [M+H]⁺, 447 [M+Na]⁺. HRMS (ESI): observed, 447.1410, [C₁₈H₂₅N₄O₆P+Na]⁺ requires 447.1404. [α]_D = +13.9° (c 1.0, CH₃Cl).

(S)-Benzyl 2-(t-butoxycarbonylamino)-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl) propanoate [Boc-4-PO(OEt)₂Tza-OBn] (12e)

Following the general procedure with 9e (0.200 mg, 0.624 mmol), flash chromatography and elution with EtOAc gave 12e as pale yellow oil (265 mg, 88%). $R_{\rm f} = 0.10$ (1:1 EtOAc/hexanes). IR (thin film) cm⁻¹: 3,293 (NH), 1,744 (m, C=O), 1,716 (s, NC=O). H NMR (500 MHz, CDCl₃): δ 8.03 (s, 1H, triazolyl), 7.27 (5H, m, Ar) 5.71 (br d, J = 7.5 Hz, 1H, NH), 5.12 (d, J = 2.0 Hz, 2H, OCH₂Ph), 4.84 (m, 2H, β -H), 4.68 (m, 1H, α -H), 4.10 (m, 4H, OCH₂CH₃), 1.33 (s, 9H, t-Bu), 1.261, (t, J = 7.0 Hz, 3H, OCH₂CH₃a), 1.259, (t, J = 7.0 Hz, 3H, OCH₂CH₃b); 13 C NMR (125 MHz, CDCl₃): δ 168.6 (CO_2) , 154.9 (NCO_2) , 137.0 $(d, J_{C,P} = 239.4 \text{ Hz}, CP)$, 134.4 (ArC) 131.2 (d, $J_{C,P} = 33.1$ Hz, triazolyl CH), 128.4 (ArH), 128.4 (ArH), 128.2 (ArH), 80.4 [OC(CH₃)₃], 67.8 (OCH_2Ph) , 62.8 (d, $J_{CP} = 5.8 \text{ Hz}$, OCH_2CH_3), 53.5 (α), 50.5 (β), 27.9 [CCH₃)₃], 15.9 (d, $J_{\text{C,P}} = 6.5 \text{ Hz}$, OCH_2CH_3). ³¹P NMR (120 MHz, CDCl₃): δ 7.52. MS (ESI) m/z: 483 $[M+H]^+$, 505 $[M+Na]^+$. HRMS (ESI): 505.1825, $[C_{21}H_{31}N_4O_7P+Na]^+$ observed, requires 505.1823. $[\alpha]_D = +11.1^{\circ} (c \ 1.0, CHCl_3).$

(S)-Benzyl 2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate [Fmoc-4-PO(OEt)₂Tza-OBn] (12f)

Following the general procedure with 9f (0.100 mg, 0.226 mmol), flash chromatography and elution with EtOAc gave 12f as a white solid (116 mg, 85%). mp $100-101^{\circ}$ C $R_f = 0.10$ (1:1 EtOAc/hexanes). IR (thin film) cm⁻¹: 3,271 (NH), 1,700–1,750 (br, C=O + NC=O). 1 H NMR (500 MHz, CDCl₃): δ 8.10 (s, 1H, triazolyl), 7.73 (d, J = 7.5 Hz, 2H, Ar) 7.54 (d, J = 7.0 Hz, 2H, Ar), 7.22–7.39 (m, 9H, Ar), 6.31 (br d, J = 7.5 Hz, 1H, NH), 5.17 (br s, 2H, OCH₂Ph), 4.90 (m [apparent br d], 2H, β -H), 4.83 (m, 1H, α -H), 4.33 (m [apparent t], 2H, NCO₂CH₂), 4.09-4.22 (m, 5H, H9' + 2 × OCH₂CH₃), 1.26-1.32 (m, 6H, $2 \times \text{OCH}_2\text{C}H_3$). The ¹³C NMR spectra showed the presence of two rotamers. ¹³C NMR (125 MHz, CDCl₃): δ 168.3 (CO₂), 155.7 (NCO₂), 143.3, 141.0, 137.2 (d, $J_{\rm CP} = 239.1 \; {\rm Hz},$ CP), 134.4 131.8 (ArC), $J_{\rm C.P} = 33.5$ Hz, triazolyl CH), 128.5 (ArH), 128.46 (ArH), 128.3 (ArH), 127.6, 126.92, 126.88, 124.93, 124.85, 119.8, [68.0, 67.2 (benzylic CH₂)], 62.9 (d, $J_{C,P} = 5.7 \text{ Hz}$, OCH_2CH_3), 54.0 (α), 50.4 (β), 46.8 (C9') 16.03 (br s,

OCH₂CH₃a), 15.98 (d, $J_{\rm C,P}=1.0~{\rm Hz},~{\rm OCH_2CH_3b}).$ ³¹P NMR (120 MHz, CDCl₃): δ 7.56. MS (ESI) m/z: 605 [M+H]⁺, 627 [M+Na]⁺. HRMS (ESI): observed, 627.1975, [C₃₁H₃₃N₄O₇P+Na]⁺ requires 627.1979. [α]_D = +10.4° (c 1.0, CHCl₃).

(S)-t-butyl 3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)-1-(methylamino)-1-oxopropan-2-ylcarbamate [Boc-5-PO(OEt)₂Tza-NHMe] (13)

Thirty-three percentage aqueous methylamine (2.4 mL, 25 mmol) was added to a solution of 11a (240 mg, 0.60 mmol) in MeOH (5 mL). The solution was stirred at room temperature for 4 h, the volatiles were evaporated, and the residue was subjected to flash chromatography. Elution with MeOH/DCM (1:20) gave 13 as pale yellow oil (207 mg, 85%). $R_f = 0.20$ (1:20 MeOH/DCM). IR (thin film) cm⁻¹: 3,307 (NH), 1,716 (OC=O), 1,672 (NC=O). ¹H NMR (500 MHz, CD₃OD): δ 8.11 (s, 1H, triazolyl), 5.12 (br d, 1H, J = 11.0 Hz, α -H), 4.74 (m, 2H, β -H), 4.25 (m, 4H, $2 \times OCH_2CH_3$), 2.75 (s, 1H, NCH₃), 1.38, (t, 6H, $J = 7.5 \text{ Hz}, 2 \times \text{OCH}_2\text{C}H_3$, 1.33 (s, 9H, t-Bu). ¹³C NMR (125 MHz, CD₃OD): δ 171.5 (CO₂), 157.2 (NCO₂), 141.6 (d, $J_{CP} = 20.8 \text{ Hz}$, triazolyl CH), 127.9 (d, $J_{CP} =$ 222 Hz, CP), 80.9 [OC(CH₃)₃], 65.5 (d, $J_{C,P} = 5.8$ Hz, OCH_2CH_3a), 65.4 (d, $J_{C,P} = 5.9 \text{ Hz}$, OCH_2CH_3b), 55.7, 52.3, 28.6, 26.5, 16.54 (d, $J_{C,P} = 2.9 \text{ Hz}$, OCH₂CH₃a), 16.49 (d, $J_{CP} = 3.0 \text{ Hz}$, OCH₂CH₃b). ³¹P NMR (120 MHz, CD₃OD): δ 4.74. MS (ESI) m/z: 406 [M+H]⁺, 428 [M+Na]⁺. HRMS (ESI): observed, 428.1673, $[C_{15}H_{28}N_5O_6P+N_a]^+$ requires 428.1669. $[\alpha]_D = -33.8^\circ$ (c 1.0, MeOH).

(S)-t-Butyl 3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)-1-(methylamino)-1-oxopropan-2-ylcarbamate [Boc-4-PO(OEt)₂Tza-NHMe] (14)

Thirty-three percentage aqueous methylamine (3.0 mL, 31 mmol) was added to a solution of triazole **12a** (0.30 g, 0.74 mmol) in MeOH (5 mL). The solution was stirred at room temperature for 4 h, then the volatiles were evaporated, and the residue was subjected to flash chromatography. Elution with MeOH/DCM (1:10) gave 14 as pale yellow oil (270 mg, 90%). $R_f = 0.20$ (MeOH/DCM 1:9). IR (thin film) cm⁻¹: 3,305 (NH), 1,712 (OC=O), 1,666 (NC=O). ¹H NMR (500 MHz, CD₃OD): δ 8.39 (s, 1H, triazolyl), 4.92 (dd, 1H, J = 12.5 Hz, 3.0 Hz, α -H), 4.63 (m, 2H, β -H), 4.14 (m, 4H, $2 \times OCH_2CH_3$), 2.70 (s, 1H, CONHC H_3), 1.32 (s, 9H, t-Bu), 1.288 (t, 3H, J = 7.0 Hz, OCH₂C H_3 a), 1.287 (t, 3H, J = 7.0 Hz, OCH₂CH₃b). ¹³C NMR (125 MHz, CD₃OD): δ 171.3 (CO₂), 157.1 (NCO₂), 137.4 (d, $J_{C,P}$ = 242.2 Hz, CP), 133.5 (d, $J_{C.P} = 33.2$ Hz, triazolyl CH), 81.0, 64.45 (d, $J_{C,P} = 4.2 \text{ Hz}$, OCH₂CH₃a), 64.50

(d, $J_{\rm C,P}=4.2~{\rm Hz}, {\rm OCH_2CH_3b}), 55.7, 52.3, 28.6, 26.5, 16.6$ (d, $J_{\rm C,P}=6.5~{\rm Hz}, {\rm OCH_2CH_3}).$ $^{31}{\rm P}~{\rm NMR}~(120~{\rm MHz}, {\rm CD_3OD}): \delta\,8.73.~{\rm MS}~({\rm ESI})~m/z: 406~{\rm [M+H]^+}, 428~{\rm [M+Na]^+}.$ HRMS (ESI): observed, 406.1855, $[{\rm C_{15}H_{28}N_5O_6P+H]^+}$ requires 406.1850. $[\alpha]_{\rm D}=-5.4^{\circ}~(c~1.0, {\rm MeOH}).$

(S)-1-(Methylamino)-1-oxo-3-(5-phosphono-1H-1,2,3-triazol-1-yl)propan-2-aminium bromide $[H_2N-5-PO(OH)_2Tza-NHMe.HBr]$ (15)

A solution of **123** (0.10 g, 0.25 mmol) in 33% HBr in AcOH (2.0 mL, 8.1 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was purified by Dowex cation-exchange chromatography. Elution with water gave **15** as a white solid (54 mg, 71%). $R_{\rm f} = 1.0$ on reverse-phase TLC (H₂O), mp 141–143°C. IR (KBr) cm⁻¹: 3,000–3,500 (br, NH₃ + OHs), 1,685 (C=O). ¹H NMR (600 MHz, D₂O): δ 7.73 (s, 1H, triazolyl), 4.89 (dd, J = 6.6, 2.4 Hz, 2H, β-H), 4.37 (apparent t, J = 6.0 Hz, 1H, α-H), 2.51 (s, 1H, CH₃). ¹³C NMR (125 MHz, D₂O): δ 166.4 (C=O), 138.4 (br s, triazolyl CH), 134.6 (d, $J_{\rm C,P} = 192.1$ Hz, CP), 52.5, 49.0, 25.9 (CH₃). ³¹P NMR (120 MHz, D₂O): δ –3.48 MS (ESI) m/z: 250 [M+H]⁺ (where M = free base); HRMS (ESI): observed, 250.0703, [C₆H₁₁N₅NaO₄P+H]⁺ requires 250.0700. [α]_D = +38.4° (c 1.0, H₂O).

(S)-1-(Methylamino)-1-oxo-3-(4-phosphono-1H-1,2,3-triazol-1-yl)propan-2-aminium bromide $[H_2N-4-PO(OH)_2Tza-NHMe.HBr]$ (16)

A solution of 14 (0.10 g, 0.25 mmol) in 33% HBr in AcOH (2.00 mL, 8.1 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was purified by Dowex cation-exchange chromatography. Elution with water gave **16** as a white solid (56 mg, 73%). $R_f = 1.0$ on reversephase TLC (H_2O). mp 145–146°C. IR (KBr disk) cm⁻¹: 3,100-3,500 (br, NH₃ + OHs), 1,646 (C=O). ¹H NMR (500 MHz, D_2O): δ 8.14 (s, 1H, triazolyl), 4.97 (d, $J = 5.5 \text{ Hz}, 2H, \beta-H), 4.54 \text{ (apparent t, } J = 5.0 \text{ Hz}, 1H, \alpha-1$ H), 2.69 (s, 1H, CH₃). 13 C NMR (125 MHz, D₂O): δ 167.0 (C=O), 144.5 (d, $J_{C,P} = 214.7 \text{ Hz}$, CP), 129.7 (d, $J_{\rm CP} = 28.9$ Hz, triazolyl CH), 52.9, 49.8, 26.3 (CH₃). ³¹P NMR (120 MHz, D_2O): δ 1.55 MS (ESI) m/z: 272 $[M+Na]^+$, 294 $[M+2Na-H]^+$ (where M = free base); HRMS (ESI): observed, 272.0522, $[C_6H_{12}N_5NaO_4P+Na]^+$ requires 272.0519. $[\alpha]_D = +27.2^{\circ} (c \ 1.0, H_2O)$.

(S)-Methyl 2-amino-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoate $[H_2N-4-PO(OH)_2Tza-OMe.HBr]$ (17)

TFA (1.0 mL, 13 mmol) was added to a solution of **12a** in DCM (10 mL) at 0°C. The solution was allowed to warm to

room temperature and stirred for 5 h; then the volatiles were evaporated. The residue was diluted with sat. aq. NaHCO₃ (30 mL) and extracted with EtOAc (3 \times 50 mL). The organic extract was washed with brine (30 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 1:10 MeOH/DCM gave 17 as pale yellow oil (302 mg, 80%). $R_f = 0.35$ (1:9 MeOH/DCM). IR (thin film) cm⁻¹: 3.392 (NH), 1.741 (C=O), ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H, triazolyl), 4.75 (dd, $J = 13.5, 4.0 \text{ Hz}, 1H, \beta$ -Ha), 4.54 (dd, J = 13.5, 7.0 Hz, 1H, β -Hb), 4.17 (m, 4H, 2 × OC H_2 CH₃), 3.97 (br s, 1H, α), 3.74 (s, 3H, OCH₃), 1.312, (t, J = 7.0 Hz, 3H, OCH₂CH₃a), 1.311, (t, J = 7.0 Hz, 3H, OCH₂CH₃b). ¹³C NMR (150 MHz, CDCl₃): δ 172.3 (CO₂), 136.9 (d, $J_{CP} = 239.6$ Hz, CP), 132.0 (d, $J_{C,P} = 33.3 \text{ Hz}$, triazolyl CH), 63.0 (d, $J_{\text{C.P}} = 5.8 \text{ Hz}, \text{ O}C\text{H}_2\text{CH}_3), 54.2 (\alpha), 53.3 (\text{OMe}), 52.6 (\beta),$ 16.0 (d, $J_{CP} = 6.5 \text{ Hz}$, OCH₂CH₃). ³¹P NMR (120 MHz, CDCl₃): δ 7.73. MS (ESI) m/z: 307 [M+H]⁺. HRMS (ESI): observed, 307.1160, $[C_{10}H_{19}N_4O_5P+H]^+$ requires 307.1166. $[\alpha]_D = -4.9^{\circ} (c \ 1.0, CHCl_3).$

(S)-Allyl 2-acetamido-3-hydroxypropanoate [Ac-Ser-OAll] (22); (S)-Allyl 2-acetamido-3-acetoxypropanoate [Ac-Ser(OAc)-OAll] (24)

Acetic anhydride (6.30 mL, 67.0 mmol) was added to a suspension of L-serine (5.90 g, 56.1 mmol) in AcOH (25 mL). The mixture was stirred for 18 h, and then the volatiles were evaporated. The residue was dissolved in DMF (25 mL), and allyl bromide (4.9 mL 56 mmol) and DIPEA (9.8 mL, 56 mmol) were added. The resulting solution was stirred for 18 h, diluted with sat. aq. NH₄Cl, and extracted with EtOAc (3 × 50 mL). The organic extract was washed with brine, dried and evaporated, and the residue was subjected to flash chromatography. Elution with EtOAc/hexanes (1:1) gave 24 as a white solid (5.79 g, 45%). mp 81–82°C $R_f = 0.40$ (EtOAc); IR (thin film) cm⁻¹: 3,294 (NH), 1,747 (OC=O), 1,661 (NC=O). ¹H NMR (500 MHz, CDCl₃): δ 7.27 (d, 1H, J = 8.0 Hz, NH), 5.56 (m, 1H, $HC = CH_2$), 4.98 (dd, 1H, J = 17.0, 1.5 Hz, $HC = CH_2$ trans), 4.89 (dd, 1H, J = 10.0, 1.0 Hz, $HC = CH_2 cis$), 4.53 (1H, m, α -H), 4.30 (m, 2H, allylic), 4.04 (dd, 2H, J = 6.5, 5.0 Hz, β -H), 1.69 (s, 3H, OCH₃), 1.68 (s, 3H, acetyl CH₃). 13 C NMR (125 MHz, CDCl₃): δ 169.9 (C=O), 169.6 (C=O), 168.5 (C=O), 130.8 (vinylic CH), 117.7 (vinylic CH₂), 65.2, 62.9, 50.9, 21.7 (CH₃), 20.1 (CH₃); MS (ESI) m/z: 230 [M+H]⁺, 252 [M+Na]⁺. HRMS (ESI): observed, 230.1020, $[C_{10}H_{15}NO_5+H]^+$ requires 230.1023. $[\alpha]_D = +58.8^{\circ}$ (c 1.0, CH₃Cl).

Further elution with EtOAc gave **22** as brown oil (2.21 g, 21%). $R_f = 0.15$ (EtOAc); IR (thin film) cm⁻¹: 3,366 (NH), 1,741 (OC=O), 1,655 (NC=O). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (d, 1H, J = 7.6 Hz, NH), 5.77

(m, 1H, HC=CH₂), 5.20 (ddd, 1H, J = 17.6, 3.2, 1.6 Hz, HC=CH₂ trans), 5.11 (ddd, 1H, J = 10.4, 2.4, 1.2 Hz, HC=CH₂ cis), 4.51 (2H, dt, J = 6.0 Hz, 1.2 Hz, allylic CH₂), 4.47 (dd, 1H, J = 8.0, 4.0 Hz, α-H), 3.83 (dd, 1H, J = 11.2, 4.0 Hz, β-Ha), 3.71 (dd, 1H, J = 11.2, 3.2 Hz, β-Hb), 1.90 (s, 1H, acetyl CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 171.2 (C=O), 170.1 (C=O), 131.2 (vinylic CH), 118.3 (vinylic CH₂), 65.8, 62.0, 54.5, 22.3 (acetyl CH₃). MS (ESI) m/z: 188 [M+H]⁺, 210 [M+Na]⁺. HRMS (ESI): observed, 188.0914, [C₈H₁₃NO₄+H]⁺ requires 188.0917. [α]_D = +33.6° (c 1.0, CH₃Cl).

(S)-Benzyl 2-acetamido-3-hydroxypropanoate [Ac-Ser-OBn] (23); (S)-Benzyl 2-acetamido-3-acetoxypropanoate [Ac-Ser(OAc)-OBn] (25)

Acetic anhydride (6.30 mL, 67.0 mmol) was added to a suspension of L-serine (5.90 g, 56.1 mmol) in AcOH (25 mL). The mixture was stirred for 18 h, and then the volatiles were evaporated. The residue was dissolved in DMF (25 mL), and benzyl bromide (6.70 mL 56.4 mmol) and DIPEA (9.80 mL, 56.3 mmol) were added. The resulting solution was stirred for 18 h, diluted with sat. aq. NH_4Cl , and then extracted with EtOAc (3 × 50 mL). The organic extract was washed with brine (30 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with EtOAc/hexanes (1:1) gave 25 as a white solid (7.05 g, 45%). $R_f = 0.50$ (EtOAc). IR (thin film) cm⁻¹: 3,293 (NH), 1,746 (OC=O), 1,661 (NC=O). ¹H NMR (400 MHz, CDCl₃): δ 7.28 (m, 5H, Ar), 7.00 (br d, 1H, J = 8.0 Hz, NH), 5.13 (dd, 2H, J = 31.6 Hz, 12.4 Hz, OCH₂Ph), 4.87 (m, 1H, α -H), 4.42 (dd, 1H, J = 11.2 Hz, 4.0 Hz, β -Ha), 4.29 (dd, 1H, J = 11.2 Hz, 3.6 Hz, β -Hb), 1.97 (s, 1H, NCOCH₃), 1.87 (s, 1H, COCH₃). ¹³C NMR (100 MHz, CDCl₃): δ 170.1 (C=O), 169.9 (C=O), 169.1 (C=O), 134.7 (ArC), 128.2 (ArH), 128.1 (ArH), 127.9 (ArH), 67.0, 63.5, 51.3, 22.4 (CH₃), 20.0 (CH₃). MS (ESI) m/z: 280 [M+H]⁺, 302 [M+Na]⁺. HRMS (ESI): observed, $[C_{14}H_{17}NO_5+Na]^+$ 302.1005, requires 302.0999. $[\alpha]_D = +24.5^{\circ} (c \ 1.0, \text{CH}_3\text{Cl}).$

Further elution with EtOAc gave **23** as a white solid (4.15 g, 31%). mp 60–62°C. $R_{\rm f}=0.20$ (EtOAc); IR (thin film) cm⁻¹: 3,313 (NH), 1,742 (OC=O), 1,657 (NC=O). ¹H NMR (400 MHz, CDCl₃): δ ; 7.30 (m, 5H, Ar), 7.14 (br d, 1H, J=7.6 Hz, NH), 5.14 (d, 2H, J=1.2 Hz, OCH₂Ph), 4.63 (m, 1H, α-H), 3.95 (dd, 1H, J=11.6 Hz, 4.0 Hz, β-Ha), 3.81 (dd, 1H, J=11.2 Hz, 3.2 Hz, β-Hb), 1.97 (s, 3H, CH₃). ¹³C NMR (100 MHz, CDCl₃): δ 171.1 (C=O), 170.3 (C=O), 135.0 (ArC), 128.4 (ArH), 128.2 (ArH), 127.8 (ArH), 67.1 (OCH₂Ph), 62.4, 54.7, 22.6 (CH₃). MS (ESI) m/z: 238 [M+H]⁺, 260 [M+Na]⁺. HRMS (ESI): observed, 238.1077, [C₁₂H₁₆NO+H]⁺ requires 238.1074. [α]_D = +14.3° (c 1.0, CH₃Cl).

(S)-2-Acetamido-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoic acid [Ac-4-PO(OEt)₂Tza-OH] (27)

Method A, saponification using LiOH: LiOH.H₂O (60 mg, 1.44 mmol) was added to a solution of **12b** (0.500 g, 1.44 mmol) in 3:1 MeOH/water (15 mL) at 0°C. After 2 h, the reaction mixture was acidified to pH 4–5 with sat. aq. KHSO₄ and then extracted with EtOAc (3 × 50 mL). The organic extract was washed with brine (10 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 1:4 MeOH/DCM gave **27** as colourless oil (144 mg, 30%). Identical in every respect except optical activity with the material described below. [α]_D = $+5.1^{\circ}$ (c 1.0, MeOH).

Method B, saponification using K_2CO_3 : K_2CO_3 (0.200 g, 1.44 mmol) was added to a solution of 12b (0.500 g, 1.44 mmol) in 3:1 MeOH/water (15 mL) at 0°C. The solution was allowed to warm to room temperature and stirred for 2 h, then acidified to pH 4 with sat. aq. KHSO₄, and extracted with EtOAc (3 × 50 mL). The organic extract was washed with brine (10 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 1:4 MeOH/DCM gave 27 as colourless oil (226 mg, 47%). $R_f = 0.10$ (1:4 MeOH/DCM). IR (thin film) cm⁻¹: 3,293 (NH), 1,720 (C=O), 1,618 (NC=O). H NMR (500 MHz, CD₃OD): δ 8.47 (s, 1H, triazolyl), 5.06 (m, 1H, β -Ha), 4.78–4.86 (m, 2H, β -Hb+ α -H), 4.20 (m, 4H, OC H_2 CH₃), 1.96 (s, 3H, NCH₃), 1.361 (t, J = 7.0 Hz, 3H, OCH₂CH₃a), 1.360 (t, J = 7.2 Hz, 3H, OCH₂CH₃b); ¹³C NMR (125 MHz, CD₃OD): δ 175.7 (CO), 173.9 (CO), 138.0 (d, $J_{CP} = 242.3$ Hz, CP), 134.3 (d, $J_{CP} = 33.3$ Hz, triazolyl CH), 65.47 (d, $J_{C,P} = 0.9$ Hz, O CH_2CH_3a), 65.43 (d, $J_{C.P} = 0.7 \text{ Hz}$, OCH₂CH₃b), 57.0 (α), 53.8 (β), 23.5 (CH₃), 17.4 (d, $J_{CP} = 6.5 \text{ Hz}$, OCH₂CH₃). ³¹P NMR (120 MHz, CD₃OD): δ 8.90. MS (ESI) m/z: 335 [M+H]⁺, 357 [M+Na]. HRMS (ESI): observed, 357.1046, $[C_{11}H_{19}N_4O_6P+Na]^+$ requires 357.0934. $[\alpha]_D = +8.8^\circ$ (c 1.0, MeOH).

(S)-2-Acetamido-3-(5-phosphono-1H-1,2,3-triazol-1-yl)propanoic acid [Ac-4-PO(OH)₂Tza-OH] (**29**)

A solution of **11d** (0.20 g, 0.47 mmol) in 33% HBr in AcOH (4.0 mL, 16 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was purified by Dowex anion exchange chromatography. Elution with water gave **29** as a white solid (90 mg, 69%). mp 146–148°C. IR (KBr disk) cm⁻¹: 3,000–3,500 (br, NH₃ + OHs), 1,717 (C=O), 1,650 (NC=O). ¹H NMR (500 MHz, D₂O): δ 7.83 (s, 1H, triazolyl), 4.71 (dd, 1H, J = 14.0, 3.5 Hz, α-H), 4.54 (dd, 1H, J = 9.0, 3.5 Hz, β-Ha), 4.46 (dd, 1H, J = 14.0, 9.5 Hz, β-Hb), 1.38 (s, 3H,

CH₃). ¹³C NMR (125 MHz, D₂O): δ 173.8 (C=O), 170.5 (C=O), 136.1 (d, $J_{\text{C,P}} = 197.9$ Hz, CP), 134.5 (br s, triazolyl), 51.6, 51.1, 21.5 (CH₃). ³¹P NMR (120 MHz, D₂O): δ –2.65. MS (ESI) m/z: 279 [M+H]⁺, 301 [M+Na]⁺. HRMS (ESI): observed, 301.0305 [C₇H₁₁N₄O₆P+Na]⁺ requires 301.0308; [α]_D = -23.8° (c 1.0, H₂O).

(S)-2-Acetamido-3-(4-phosphono-1H-1,2,3-triazol-1-yl)propanoic acid [Ac-5-PO(OH)₂Tza-OH] (**30**)

Method A, from the benzyl ester 12d: A solution of 12d (200 mg, 0.47 mmol) in 33% HBr in AcOH (4.0 mL, 16 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anionexchange chromatography. Elution with water gave 30 as a white solid (88 mg, 67%). mp 135-137°C. IR (KBr disk) cm^{-1} : 3,100–3,500 (br, NH₃ + OHs), 1,732 (C=O), 1,637 (NC=O). 1 H NMR (500 MHz, D₂O): δ 8.10 (s, 1H, triazolyl), 4.71 (dd, 2H, J = 12.5, 5.5 Hz, β -H), 4.60 (dd, 1H, J = 13.5, 7.0 Hz, α -H), 1.67 (s, 3H, CH₃). ¹³C NMR (125 MHz, D_2O): δ 173.9, 171.1, 139.9 $J_{\text{C,P}} = 223.7 \text{ Hz}, \text{CP}$, 131.5 (d, $J_{\text{C,P}} = 30.2 \text{ Hz}$, triazolyl), 52.2, 50.5, 21.5 (CH₃). ³¹P NMR (120 MHz, D₂O): δ 2.68. MS (ESI) m/z: 279 [M+H]⁺, 301 [M+Na]⁺. HRMS (ESI): observed 279.0491 $[C_7H_{11}N_4O_6P+H]^+$ requires 279.0489. $[\alpha]_D = +10.0^{\circ} (c \ 1.0, H_2O).$

Method B, from the carboxylic acid 27: A solution of 27 (0.20 g, 0.60 mmol) in 33% HBr in AcOH (5 mL, 20 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anion-exchange chromatography. Elution with water gave 30 (117 mg, 70%) as a white solid, $[\alpha]_D = +6.1^\circ$ (c 1.0, H₂O), identical in every other respect with the material described above.

(S)-2-(t-Butoxycarbonylamino)-3-(5-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoic acid [Boc-5-PO(OEt)₂Tza-OH] (**31**).

LiOH.H₂O (5 mg, 0.1 mmol) was added to a stirred solution of **11a** (51 mg, 0.13 mmol) in 3:1 MeOH/water (4 mL) at 0°C. After 2 h, the reaction mixture was acidified to pH 4 with sat. aq. KHSO₄, and then extracted with DCM (3 × 40 mL). The organic extract was washed with brine (10 mL), dried and evaporated, and the residue was purified by flash chromatography. Elution with 1:9 MeOH/DCM gave 26 as colourless oil (41 mg, 86%). $R_{\rm f} = 0.10$ (1:9 MeOH/DCM); 1H NMR (500 MHz, CD₃OD): δ 8.09 (s, 1H, triazolyl), 5.15 (m, α -CH), 4.74 (m, 2H, β -CH₂), 4.25 (m, 4H, OCH₂CH₃), 1.36 (t, J = 7.0 Hz, 6H, OCH₂CH₃), 1.30 (s, 9H, t-Bu). ¹³C NMR (125 MHz, CD₃OD): 175.5 (CO₂), 158.0 (NCO₂), 142.3 (d,

 $J_{\rm C,P}=20.6$ Hz, triazolyl CH), 128.4 (d, $J_{\rm C,P}=222.5$ Hz, CP), 81.1 [OC(CH₃)₃], 66.3 (d, $J_{\rm C,P}=5.5$ Hz, OCH₂-CH₃a), 66.2 (d, $J_{\rm C,P}=5.5$ Hz, OCH₂CH₃b), 57.1 (α), 54.5 (β), 29.5 (CH₃)₃, 17.4 (d, $J_{\rm C,P}=6.3$ Hz, OCH₂CH₃a), 17.3 (d, $J_{\rm C,P}=5.9$ Hz, OCH₂CH₃b). MS (ESI) m/z: 393 [M+H]⁺, 415 [M+Na]⁺.

A sample that had partially degraded was further purified by HPLC to compare with the reported spectra in CDCl₃. ¹H NMR (500 MHz, CDCl₃): δ 8.00 (br s, 1H, triazolyl), 5.90 (br s, 1H, NH) 5.07 (br m, 1H, α-CH), 4.91 (br m, 2H, β-CH₂), 4.22 (m, 4H, OCH₂CH₃), 1.35–1.40 (m, 6H, OCH₂CH₃), 1.36 (s, 9H, *t*-Bu). ¹³C NMR (125 MHz, CDCl₃): δ 171.1 (br, CO₂), 155.8 (NCO₂), 140.5 (br s, triazolyl CH), 126.7 (br d, $J_{C,P}$ = 231.5 Hz, CP), 80.8 [OCCH₃)₃], 64.3 (br s, OCH₂CH₃), 53.8 (α), 51.1 (β), 28.2 [CCH₃)₃], 16.1 (br s, OCH₂CH₃); [α]_D = +1.2° (*c* 0.5, CDCl₃). The NMR data were similar to those reported (Kee et al. 2010). See Table 3 for enantiopurity.

(S)-2-(t-Butoxycarbonylamino)-3-(4-(diethoxyphosphoryl)-1H-1,2,3-triazol-1-yl)propanoic acid [Boc-4-PO(OEt)₂Tza-OH] (32).

LiOH.H₂O (5 mg, 0.1 mmol) was added to a stirred solution of 12a (51 mg, 0.13 mmol) in 3:1 MeOH/water (4 mL) at 0°C. After 2 h, the reaction mixture was acidified to pH 4 with saturated aqueous KHSO₄, and then extracted with DCM (3 × 40 mL). The extract was washed with brine (10 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 1:4 MeOH/DCM gave 32 as colourless oil (42 mg, 88%). $R_{\rm f} = 0.10$ (1:4 MeOH/DCM); ¹H NMR (500 MHz, CD₃OD): δ 8.39 (s, 1H, triazolyl), 5.01 (br dd, J = 17.5, 10.2 Hz, 1H, β -CH₂a), 4.71 (m [apparent dd], 1H, β -CH₂b), 4.51 (m, 1H, α -CH), 4.17 (m, 4H, OCH₂CH₃), 1.37 (s, 9H, t-Bu), 1.32 (t, J = 7.1 Hz, 6H, OCH₂CH₃). ¹³C NMR (125 MHz, CD₃OD): δ 175.2 (CO₂), 158.2 (NCO₂), 138.0 (d, $J_{CP} = 242.2$ Hz, CP), 134.2 (d, $J_{CP} = 31.8$ Hz, triazolyl CH), 81.4 [OCCH₃)₃], 65.4 (d, $J_{C,P} = 3.4$ Hz, OCH_2CH_3a), 65.3 (d, $J_{C,P} = 3.3 \text{ Hz}$, OCH_2CH_3b), 57.5 (α), 54.0 (β), 29.5 (CH₃)₃, 17.4 (d, $J_{C,P} = 6.5 \text{ Hz}$, OCH_2CH_3). MS (ESI) m/z: 415 [M+Na]⁺.

A sample that had partially degraded was further purified by HPLC to compare with the reported spectra in CDCl₃. ¹H NMR (600 MHz, CDCl₃): δ 8.28 (br s, 1H, triazolyl), 6.4 (v br s, OH), 5.55 (br s, 1H, NH), 4.98 (m, 2H, β-CH₂), 4.75 (br s, 1H, α-H), 4.20 (br m, 4H, OCH₂CH₃), 1.43 (s, 9H, *t*-Bu), 1.34 (2 × overlapping t at 1.34 and 1.33 [apparent q], J = 6.0 Hz, 6H, OCH₂CH₃). ¹³C NMR (150 MHz, CDCl₃): δ 170.5 (br CO₂), 155.4 (NCO), 136.4 (br d, $J_{C,P} = 231.6$ Hz, CP), 132.5 (br s, triazolyl CH), 80.7 [OCCH₃)₃], 63.85 (br s, OCH₂CH₃a), 63.76 (br s, OCH₂CH₃b), 53.7 (br, α), 51.2 (β), 28.2

(CH₃)₃, 16.1 (br s, OCH₂CH₃); $[\alpha]_D = +40.5^\circ$ (c 0.7, CHCl₃). The NMR data were similar to those reported (Kee et al. 2010). See Table 3 for enantiopurity.

(S)-1-carboxy-2-(5-phosphono-1H-1,2,3-triazol-1-yl)ethanaminium bromide $[H_2N-5-PO(OH)_2Tza-OH.HBr]$ (33)

Method A, from the carboxylic acid 31: A solution of 31 (0.090 g, 0.23 mmol) in 33% HBr in AcOH (2 mL, 8 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anion-exchange chromatography. Elution with water gave 33 as a white solid (51 mg, 70%), identical in every respect except optical rotation with the material described below.

Method B, from the benzyl ester 11e: A solution of 11e (0.100 g, 0.207 mmol) in 33% HBr in AcOH (2 mL, 8 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anionexchange chromatography. Elution with water gave 33 as a white solid (43 mg, 65%), mp 138–140°C. IR (KBr disk) cm^{-1} : 3,200–3,500 (br, NH3 + OHs), 1,600–1,750 (br, obscures C=O); ${}^{1}H$ NMR (600 MHz, D₂O) δ : 7.86 (s, 1H, triazolyl), 5.11 (dd, J = 15.0, 3.6 Hz, 1H, β -Ha) 4.98 (dd, J = 15.6, 7.2 Hz, 1H, β -Hb), 4.27 (dd, J = 7.8, 3.6 Hz, 1H, α -H); ¹³C NMR (125 MHz, D₂O): δ 169.6 (CO), 139.9 $J_{\rm C.P} = 18.4 \; {\rm Hz},$ triazolyl CH), 135.6 $J_{\text{C,P}} = 191.8 \text{ Hz}, \text{ CP}, 53.2 (\alpha), 49.0 (\beta); ^{31}\text{P} \text{ NMR}$ (120 MHz): δ –3.14; MS (ESI) m/z: 237 [M+H]⁺, 259 $[M+Na]^+$, 281 $[M+2 Na]^+$ (where M = free base); HRMS (ESI): observed, 259.0201, $[C_5H_{10}N_4O_5P+Na]^+$ requires 259.0203; $[\alpha]_D = -7.7^\circ$ (c 0.5, H₂O).

(S)-1-Carboxy-2-(4-phosphono-1H-1,2,3-triazol-1-yl)ethanaminium bromide $[H_2N-4-PO(OH)_2Tza-OH.HBr]$ (34).

Method A, from the carboxylic acid 32: A solution of 32 (0.090 g, 0.23 mmol) in 33% HBr in AcOH (2 mL, 8 mmol) was stirred for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anion-exchange chromatography. Elution with water 34 as a white solid (52 mg, 72%), identical in every respect, except optical activity, with the material described below.

Method B, from the benzyl ester 12e: Asolution of 12e (0.100 g, 0.207 mmol) in 33% HBr in AcOH (2 mL, 8 mmol) was stirred at room temperature for 48 h. The volatiles were evaporated and the residue was subjected to Dowex anion-exchange chromatography. Elution with water gave 34 as a white solid (44 mg, 67%), mp 133–135°C. IR (KBr disk) cm⁻¹: 3,300–3,500 (br,

NH3 + OHs), 1,716 (C=O); ¹H NMR (600 MHz, D₂O) δ: 8.12 (s, 1H, triazolyl), 4.98–5.00 (m, 2H, β-H), 4.47 (dd, J = 5.4, 4.8 Hz, 1H, α-H). ¹³C NMR (125 MHz, D₂O): δ 170.7 (CO), 143.7 (d, $J_{\rm C,P} = 217.6$ Hz, CP), 130.2 (d, $J_{\rm C,P} = 31.7$ Hz, triazolyl CH), 54.5 (α), 50.0 (β). ³¹P NMR (120 MHz): δ 1.95; MS (ESI) m/z: 237 [M+H]⁺ (where M = free base); HRMS (ESI): observed, 237.0385, [C₅H₁₀N₄O₅P]⁺ requires 237.0383. [α]_D = -25.0° (c 0.5, H₂O).

(S)-Benzyl 2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-hydroxypropanoate [Fmoc-Ser-OBn] (**36**)

Benzyl bromide (1.40 mL, 11.8 mmol) was added to a monohydrate solution of Fmoc-L-serine (2.00 g.5.79 mmol) and DIPEA (1.00 mL, 11.6 mmol) in DMF (20 mL) at 0°C. The solution was allowed to warm to room temperature, stirred for 18 h, diluted with sat. aq. NH₄Cl (30 mL), and extracted with EtOAc (3 \times 50 mL). The organic extract was washed with brine (50 mL), dried and evaporated, and the residue was subjected to flash chromatography. Elution with 2:3 EtOAc/hexanes gave 36 as a white solid (2.18 g, 90%). ¹H NMR (500 MHz, CDCl₃): δ 7.81 (d, J = 7.5 Hz, 2H, Ar), 7.70 (br d, J = 5.5 Hz, 2H, Ar), 7.46 (apparent t, J = 7.5 Hz, 4H, Ar), 6.47 (br d, J = 5.0 Hz, 1H, NH), 5.27 (s, 2H, OCH₂Ph), 4.66 (m, 1H, α-H), 4.53 (m [apparent t], 1H, NCO₂CH₂a), 4.43 (m [apparent t], 1H, NCO₂CH₂b), 4.66 (t, J = 7.0 Hz, 1H, H9'), 4.12 (m [apparent br d], 1H, β -Ha), 3.99 (m [apparent br d], 1H, β-Hb). 13 C NMR (125 MHz, CD₃OD): δ 170.4 (CO₂), 156.3 (NCO₂), 143.5 (Ar), 143.3 (Ar), 140.9 (Ar), 134.8 (Ar), 128.2 (Ar), 128.0 (Ar), 127.7 (Ar), 127.3 (Ar), 126.7 (Ar), 119.6 (Ar), 67.0, 66.9, 62.4, 56.0, 46.6. MS (ESI) m/z: 440 [M+Na]⁺. [α]_D = +0.7° (c 1.0, DCM) [lit. (Huang et al. 2004) $+0.6^{\circ}$ (c 1.0, DCM)]. The ¹H and ¹³C NMR data are similar to those reported (Huang et al. 2004).

Results and discussion

Our synthetic endeavours began with the thermal Huisgen cycloaddition (Dondoni et al. 2004) of the known phosphonate **10** (Vuilhorgne et al. 2003) and serine-derived azide **9a** (Boger et al. 1994). Gratifyingly, this reaction gave both of the desired triazole regioisomers **11a** and **12a** (Scheme 1; Table 1), which were easily separable by column chromatography. The constitution of the adducts was established by an HMBC experiment; specifically, a three-bond correlation between the triazolyl proton and the β -carbon identified the 1,4-substituted triazole **12a**.

As expected, the Cu(I)-catalysed 'click' reaction (Rostovtsev et al. 2002) afforded the 1,4-disubstituted isomer 12a exclusively, in excellent yield, whereas Ru(II)

Scheme 1 Carboxyl-protecting groups in azidoalanine derivatives significantly affect the regioselectivity of dipolar cycloadditions to give the corresponding triazolylalanine phosphonates. See Table 1 for the nature of the R/R' groups, conditions and yields

Azide	R	R'	Product	Yield		
				Δ	Cu ^I	Ru ^{II}
9a	Boc	Me	11a	21	-	56
			12a	58	95	21
9b	Ac	Me	11b	26	_	57
			12b	60	91	19
9c	Ac	All	11c	41	-	73
			12c	44	84	10
9d	Ac	Bn	11d	43	_	81
			12d	45	87	-
9e	Boc	Bn	11e	41	_	80
			12e	42	88	-
9f	Fmoc	Bn	11f	39	-	78
			12f	41	85	-

Conditions: Δ: PhMe, 110°C; Cu^I: Cu₂SO₄, sodium ascorbate, 1:1 *t*-BuOH-H₂O; Ru^{II}: Cp*RuCl(PPh₃)₂, PhMe, 60°C

catalysis (Zhang et al. 2005) allowed a substantial improvement in the yield of the 1,3-isomer 11a (Table 1).

Amidation (Lesma et al. 2007) of the methyl esters 11a and 12a proceeded smoothly, providing the *N*-methylamides 13 and 14, respectively, in excellent yields (Scheme 2). Protonolysis then provided the first target haptens, ready for bioconjugation through the amino group, as the hydrobromides 15 and 16.

In contrast, although efficient and selective removal of the Boc group of **12a** was achieved, all efforts to acetylate the resulting amine **17** to give **18** were unsuccessful. An attempted coupling with *N*-acetylserine to give **19** also failed. It is unclear at this stage what prevents these seemingly simple transformations. Thus, to access haptens **7** and **8** (Fig. 1) it was necessary to acetylate at an earlier point.

To this end, the known azide **9b** (Davoli et al. 1995) was prepared in 60% yield from methyl *N*-acetylserinate (**20**) (Maruyama et al. 1992) using a Mitsunobu reaction with

Scheme 2 Reagents, conditions and yields: **a** MeNH₂, MeOH/H₂O (13, 85%; 14 90%); **b** 33% HBr/AcOH (15, 71%; 16, 73%); **c** TFA, DCM (80%); **d** Ac₂O or AcCl, NEt₃, DCM (0%); **e** HCTU, *i*-Pr₂NEt, DCM (0%)

hydrazoic acid (Scheme 3). The azide-alkyne cycloadditions of **9b** under thermal, Cu(I)- or Ru(II)-catalysed conditions were very similar to those for the analogues carbamate **9a** (Scheme 1; Table 1).

Saponification of the resultant triazoylalanines 11b and 12b proved problematic (Scheme 4). The reaction of 12b with LiOH at room temperature gave only N-acetyldehydroalanine (28). At lower temperature, 28 was not observed, but the yield of the desired carboxylic acid 27 was poor. This, coupled with the earlier observation of 28, the product of an E1cb reaction, indicated the likely formation of an intermediate enolate and hence at least partial racemisation of 12b/27 under the reaction conditions. Indeed, when the saponification of 12b was repeated with the weaker base K_2CO_3 , at room temperature, the desired carboxylic acid 27 was isolated in improved, although still modest, yield, and the specific rotation of this material was greater than that of the LiOH-derived product (Table 2). At

Scheme 3 Reagents, conditions and yields: **a** PPh₃, HN₃, DIAD, THF, PhMe (**9b**, 60%); **b** (1) Ac₂O, AcOH; (2) AllBr or BnBr, *i*-Pr₂NEt, DMF (**22**, 21%; **24**, 45%; **23**, 31%; **25**, 45% [all over two steps]); **c** PPh₃, HN₃, DEAD (**9c**) or DIAD (**9d**), THF, PhMe (**9c**, 61%; **9d**, 61%)

Scheme 4 Reagents, conditions and yields: **a** base, MeOH, H_2O , then H_3O^+ ; **b** 33% HBr/AcOH. See Table 2 for further details

0°C, **12b** failed to react with K₂CO₃. The saponification of the regioisomer **11b** was also complicated by competing elimination, and in this case the desired product **26** had almost identical chromatographic mobility to the *N*-acetyldehydroalanine (**28**) and could not be isolated.

Protonolysis of the 1,4-triazolylphosphonate **27** derived from **12b** gave the target hapten **30** (the protonated form of **7**, Fig. 1) in 70% yield (Scheme 4), but the poor yields of the saponifications, coupled with the likelihood that partial racemisation had occurred, even with K_2CO_3 (which, as described below, was ultimately shown to be case), meant an alternative carboxyl-protecting group strategy had to be devised.

Allyl and benzyl esters were considered simultaneously. The azidoalanine derivatives **9c** and **9d** were prepared in three steps from L-serine (**21**) (Scheme 3). Acetylation

Table 2 Deprotection of *N*-acetyltriazolylalaninephosphonic acid derivatives (Scheme 4)

Compound	Conditions	Yield (%)	Specific rotation	Solvent (c 1.0)
27	LiOH, 0°C	31	+5.1°	МеОН
27	LiOH, RT	0	_	_
27	K_2CO_3 , 0°C	0	-	_
27	K ₂ CO ₃ , RT	47	$+8.8^{\circ}$	MeOH
29	from 11d	69	-23.8°	H_2O
30	from 27	70	+6.1°	H_2O
30	from 12d	67	$+10.0^{\circ}$	H_2O

followed by selective alkylation gave the allyl and benzyl esters, 22 and 23, respectively, after separation from the N,O-diacetyl derivatives, 24 and 25. Mitsunobu reactions of 22 and 23 with hydrazoic acid provided the desired azides.

The thermal Huisgen cycloadditions of 9c and 9d with alkyne 10 produced more of the 1,5-regiosiomers 11c and 11d relative to the reaction of the corresponding methyl ester 9b (Scheme 1; Table 1). This innate tendency had little effect on the Cu(I)-catalysed reactions, with only the 1,4-disubstituted triazoles 12c and 12d observed in both cases. Conversely, relative to the methyl ester 9b, the allyl-protecting group in 9c improved the regioselectivity of the Ru(II)-catalysed reaction, giving the 1,5-isomer 11c as the predominant product. The reaction of the still bulkier benzyl ester 9d was completely regioselective, with only the desired 1,5-triazole 11d observed, and isolated in excellent yield. At this stage the enhanced regioselectivity is attributed to steric effects; however, chelation of the catalyst by the pendant π -systems cannot be ruled out.

Attempts to remove the allyl-protecting groups in 11c/ 12c under standard conditions [Pd(PPh₃)₄, morpholine, THF] (Schmittberger and Cotte 1998) returned only starting material. The failure of this normally reliable reaction could be due to the formation of a stable Pd complex with the abundant coordinating groups in the substrate. Alternative deprotection conditions were not pursued as the chemistry of the benzyl esters proved more fruitful. Thus, protonolysis of 11d and 12d gave the desired haptens 29 and 30 (the protonated forms of 7 and 8), ready for bioconjugation through the carboxyl terminus (Scheme 4). The specific rotation of the hapten 30 derived in one step from 12d was slightly larger than that of the material prepared in two steps from the analogous methyl ester 12b (10.0° vs. 6.1°), indicating that partial racemisation had indeed occurred in the saponification step.

With the two desired haptens in hand, we then targeted the free phosphonoamino acids 33 and 34 (Scheme 5).

Scheme 5 Reagents and conditions: a LiOH, MeOH, H_2O , then H_3O^+ ; b 33% HBr, AcOH (see Table 3 for yields)

Although not particularly useful for synthesis or antibody generation, the free amino acids might possess interesting biological activity, such as histidine kinase inhibition. While extremely polar and almost certainly not able to passively cross cell membranes, it is possible that they may be substrates for an amino acid transporter.

Attempts to effect global deprotection of the methyl ester **11a** with aqueous hydrochloric or hydrobromic acid were unsuccessful, so a two-step saponification-protonolysis was investigated. Although partial racemisation of the acetamide **11b** was observed during saponification, we were optimistic that racemisation could be avoided in this case due to the decreased acidity of the α -protons in t-butyl carbamates compared with analogous N-acylamino esters. Careful saponification of **11a** and **12a** gave the carboxylic acids **31** and **32** reported by Muir (Kee et al. 2010)

(Scheme 5). The NMR spectra of **31** and **32** matched those reported except that in our case, most signals in the ¹H NMR spectra, and several signals in the ¹³C NMR spectra, in CDCl₃ solution, were significantly broadened in comparison with the published spectra, presumably due to some dynamic phenomenon. In contrast, the NMR spectra in CD₃OD exhibited sharp signals.

The specific rotations of both regioisomeric carboxylic acids were significantly lower in magnitude than those reported (Kee et al. 2010) (Table 3), suggesting that partial racemisation had again occurred during the saponification step. Enantioselective chromatography showed this to be the case; the enantiomeric excesses calculated from the HPLC peak integrals are close to those determined from the specific rotations. Although protonolysis afforded the 'free' phosphonoamino acids 33 and 34, it was necessary to revise the protecting group strategy again to avoid the complication of partial racemisation.

The azide-alkyne cycloadditions of benzyl *N-t*-butoxycarbonylazidoalanine **9e** (Kogan and Rawson 1992) reflected those of the corresponding acetyl derivative **9d** (Scheme 1; Table 1), indicating that, while the ester group significantly influences the outcome of these reaction, they are largely unaffected by the *N*-protecting group. The Cu(I)-catalysed cycloaddition of the benzyl ester **9e** under aqueous conditions was higher yielding than the analogous reaction of the free carboxylic acid in DMF reported by Muir and co-workers (Kee et al. 2010). It is more difficult to compare the Ru(II)-catalysed reaction of **9e** in this work with that reported by Muir, as they immediately removed the benzyl-protecting group, providing acid **31** in 68% yield over two steps. Nevertheless, the desired 1,5-triazole **11e** was formed exclusively in excellent yield.

Global deprotection of 11e and 12e by protonolysis revealed the free amino acid hydrobromides 33 and 34 as

Table 3 Deprotections to give the free phosphonoamino acids (Scheme 6)

Compound	Yield (%)	$[\alpha]_{\mathrm{D}}^{\mathrm{a}}$		ee	
		Muir ^b	This work	$[\alpha]_{\mathrm{D}}$	HPLC ^e
31	86	+1.8° (1.0)	+1.2° (0.5)	67%°	70%
32	88	+60° (1.0)	+40.5° (0.7)	68% ^c	74%
33 (from 31)	70	_	-5.6° (0.8)	72% ^d	_
33 (from 11e)	65	_	-7.7° (0.5)	_	_
34 (from 32)	72	_	-18.8° (0.5)	75% ^d	_
34 (from 12e)	67	_	-25.0° (0.5)	_	_

^a $[\alpha]_D$ values were recorded at 21°C (Muir) and ambient temperature (this work). Concentrations in g 100 mL⁻¹ in CHCl₃ (31, 32) or H₂O (33, 34) are given in brackets

^e Determined from the relative integrals of the peaks corresponding to the enantiomers by enantioselective HPLC

b (Kee et al. 2010)

^c Determined by comparison with the specific rotations reported by Muir and co-workers (Kee et al. 2010)

d Determined by comparison with the specific rotation of the same material synthesised by protonolysis of the benzyl esters 11e/12e

FmocN OH
$$\xrightarrow{a}$$
 FmocN OBn \xrightarrow{b} FmocN OBr OBr \xrightarrow{a} \xrightarrow{a} \xrightarrow{b} $\xrightarrow{$

Scheme 6 Reagents and conditions: **a** BnBr, *i*-Pr₂NEt, DMF (90%); **b** PPh₃, HN₃, DEAD, THF, PhMe (65%)

slightly hygroscopic solids, which were purified by ion exchange chromatography (Scheme 5). The specific rotations of the free amino acids 33 and 34 prepared in this way were consistent with those expected for enantiopure material, based on the specific rotations of 33 and 34 prepared from partially racemised carboxylic acids 31 and 32 (Table 3).

Finally, to provide access to derivatives suitable for use in solid-phase peptide synthesis, we targeted the Fmocprotected triazolylalaninephosphonates 11f and (Scheme 1). Fmoc-Ser-OBn (36), prepared by esterification of commercially available Fmoc-serine (35) with benzyl bromide, underwent a Mitsunobu reaction with hydrazoic acid to provide the novel azide 9f (Scheme 6). Thermal cycloaddition of this compound with alkyne 10 gave a mixture of the regioisomeric triazoles 11f and 12f (Scheme 1; Table 1) and Cu(I)-catalysis provided the 1,4-regioisomer 12f exclusively. Webb and co-workers have recently prepared the corresponding carboxylic acid by Cu(I)-catalysed cycloaddition of Fmoc-azidoalanine (McAllister et al. 2011). Ru(II)-catalysis is not compatible with a free carboxylic acid (Kee et al. 2010); the use of the benzyl ester-protecting group in the present work allows Ru(II)-catalysis, providing the 1,5-regioisomer 11f exclusively, and in good yield (Table 1).

Conclusion

The synthesis of several stable triazolylphosphonate analogues of *N*1- and *N*3-phosphohistidine has been achieved. In addition to the 'free' amino acids, derivatives suitable for bioconjugation through amide linkages with lysine or aspartate/glutamate residues of carrier proteins were efficiently prepared.

A survey of the azide-alkyne cycloadditions of various L-azidoalanine derivatives with diethyl ethynylphosphonate has revealed that the amino-protecting group has little impact on the regioselectivity of the reactions. In contrast, bulkier carboxyl-protecting groups increase the relative proportion of the 1,5-disubstituted triazoles under thermal conditions, and with Ru(II) catalysis, allow exclusive and high-yielding formation of these products. Irrespective of the protecting groups, Cu(I) catalysis is regiospecific, providing the 1,4-disubstituted triazoles cleanly and in excellent yields.

The haptens described herein should prove valuable in the ongoing search for generic phosphohistidine antibodies and for otherwise exploring the biochemistry of histidinephosphorylated proteins, the corresponding kinases, and associated cell-signalling pathways.

Acknowledgments SM was the recipient of a UWA full PhD scholarship.

Conflict of interest The authors declare that they have no conflict of interest.

References

Attwood PV, Piggott MJ, Zu XL, Besant PG (2007) Focus on phosphohistidine. Amino Acids 32:145–156

Besant PG, Attwood PV (2005) Mammalian histidine kinases. Biochim Biophys Acta, Proteins Proteomics 1754:281–290

Besant PG, Attwood PV (2009) Detection and analysis of protein histidine phosphorylation. Mol Cell Biochem 329:93–106

Besant PG, Tan E, Attwood PV (2003) Mammalian protein histidine kinases. Int J Biochem Cell Biol 35:297–309

Boger DL, Honda T, Menezes RF, Colletti SL, Dang Q, Yang W (1994) Total syntheses of (+)-P-3a, epi-(-)-P-3a, and (-)-desacetamido P-3a. J Am Chem Soc 116:82–92

Davoli P, Forni A, Moretti I, Prati F (1995) Stereochemistry of nucleophilic ring-opening reactions of optically active N-acetyl-2methoxycarbonylaziridine. Tetrahedron Asymmetry 6:2011–2016

Dondoni A, Giovannini PP, Massi A (2004) Assembling heterocycletethered *C*-glycosyl and α-amino acid residues via 1,3-dipolar cycloaddition reactions. Org Lett 6:2929–2932

Huang Y, Dey S, Zhang X, Soennichsen F, Garner P (2004) The α -helical peptide nucleic acid concept: merger of peptide secondary structure and codified nucleic acid recognition. J Am Chem Soc 126:4626–4640

Janiak-Spens F, West AH (2004) Histidine kinases. Handbook of Cell Signaling 1:563–566

Kee J-M, Villani B, Carpenter LR, Muir TW (2010) Development of stable phosphohistidine analogues. J Am Chem Soc 132:14327–14329

Kogan TP, Rawson TE (1992) The synthesis of chiral 3-oxo-6-[(phenylmethoxy)carbonyl]-2-piperazineacetic acid esters designed for the presentation of an aspartic acid side chain. A subsequent novel Friedel Crafts reaction. Tetrahedron Lett 33:7089-7092

Lecercle D, Sawicki M, Taran F (2006) Phosphine-catalyzed α -P-addition on activated alkynes: a new route to P-C-P backbones. Org Lett 8:4283–4285

Lesma G, Meschini E, Recca T, Sacchetti A, Silvani A (2007) Synthesis of tetrahydroisoquinoline-based pseudopeptides and their characterization as suitable reverse turn mimetics. Tetrahedron 63:5567–5578

Maruyama K, Hashimoto M, Tamiaki H (1992) Intramolecular photoreaction of synthetic oligopeptide-linked anthraquinone molecules. J Org Chem 57:6143–6150

McAllister TE, Nix MG, Webb ME (2011) Fmoc-chemistry of a stable phosphohistidine analogue. Chem Commun 47:1297–1299

Meldal M, Tornoe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108:2952–3015

Nakata T, Nakatani M, Takahashi M, Okai J, Kawaoka Y, Kouge K, Okai H (1996) Peptide synthesis in aqueous solution. V. Properties and reactivities of (*p*-hydroxyphenyl)benzylmethylsulfonium salts

for direct benzyl esterification of N-acylpeptides. Bull Chem Soc Jpn 69:1099-1106

- Pirrung MC, James KD, Rana VS (2000) Thiophosphorylation of histidine. J Org Chem 65:8448–8453
- Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed 41:2596–2599
- Schenkels C, Erni B, Reymond J-L (1999) Phosphofurylalanine, a stable analog of phosphohistidine. Bioorg Med Chem Lett 9:1443–1446
- Schmittberger T, Cotte A (1998) Synthesis of characteristic lipopeptides of lipid modified proteins employing the allyl ester as protecting group. Chem Commun 937–938
- Steeg PS, Palmieri D, Ouatas T, Salerno M (2003) Histidine kinases and histidine phosphorylated proteins in mammalian cell biology, signal transduction and cancer. Cancer Lett 190:1–12
- Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

- Tan E, Besant PG, Zu XL, Turck CW, Bogoyevitch MA, Lim SG, Attwood PV, Yeoh GC (2004) Histone H4 histidine kinase displays the expression pattern of a liver oncodevelopmental marker. Carcinogenesis 25:2083–2088
- Tummatorn J, Albiniak PA, Dudley GB (2007) Synthesis of benzyl esters using 2-benzyloxy-1-methylpyridinium triflate. J Org Chem 72:8962–8964
- Vuilhorgne M, Malpart J, Mutti S, Mignani S (2003) Preparative route to 2-ethoxycarbonylimidazole-4-phosphonate and diethyl imidazole-2,4-dicarboxylate. J Het Chem 40:159–162
- Wu P, Fokin VV (2007) Catalytic azide-alkyne cycloaddition: reactivity and applications. Aldrichimica Acta 40:7–17
- Yeager AR, Finney NS (2004) The first direct evaluation of the twoactive site mechanism for chitin synthase. J Org Chem 69:613–618
- Zhang L, Chen X, Xue P, Sun HHY, Williams ID, Sharpless KB, Fokin VV, Jia G (2005) Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J Am Chem Soc 127:15998–15999

